Kehon eri DNA-yhteisöt ja elinikä

On yleisesti tunnettua, että perimä vaikuttaa elinikään. Perimällä viitataan yleensä solumme tumassa olevaan DNA:han, mutta kehossamme on todellisuudessa kolme hyvin erilaista DNA-yhteisöä. Nämä eri DNA-yhteisöt toimivat vuorovaikutuksessa keskenään. Vai yhden DNA-sisältöön voit omalla toiminnallasi vaikuttaa.

Perimän eliksiirit tulevat kolmessa pullossa. Kuva: Pixabay

Perimämme on kirjattu DNA-molekyyleihin. Suurin osa solujemme DNA:sta on tuman kromosomeissa olevaa DNA:ta, josta puolet perimme isältä ja puolet äidiltä. Tämän lisäksi soluissa on mitokondriaalista DNA:ta, jonka perimme yksinomaan äidiltä. Kolmannen DNA-yhteisön muodostavat suolistossamme elävät mikrobit. Nämä kolme DNA-yhteisöä muodostavat koko kehossa olevan perimän, joka puolestaan vaikuttaa sairastumisalttiuteen ja elinikään.

Kromosomit kertovat sukusi tarinan

Identtisiä kaksosia lukuun ottamatta meistä jokaisella on ainutkertainen perimä. Perimämme on syntynyt munasolun ja siittiön yhdistyessä, jolloin vanhempiemme geenit yhdistyivät muodostaen uuden yksilön. Koska ihmisellä on 46 kromosomiparia, voi näistä syntyä lukemattomia erilaisia geneettisiä yhdistelmiä uuden ihmisen aluksi.

Saamamme perimä määrää suoraan tiettyjä ominaisuuksiamme. Esimerkiksi silmien väri määräytyy geenien perusteella ilman ympäristön vaikutusta. Sen lisäksi perimä asettaa tietyt rajat useille eri ominaisuuksille, jotka eivät ole pelkästään geeneistä riippuvaisia. Sinulla voi olla esimerkiksi perinnöllinen alttius sydän- ja verisuonitaudeille, mutta jos syöt terveellisesti, liikut riittävästi ja pysyttelet normaalipainossa, ei tämä tauti välttämättä koskaan puhkea. Eliniästä geenit määräävät arviolta noin neljänneksen.

Oman perimän tunteminen voi edesauttaa myös pitkän iän tavoittelua. Mikäli suvussa kulkee esimerkiksi elintapoihin vahvasti liittyviä sairauksia, voi niitä pyrkiä välttämään terveellisillä elintavoilla. Myös suvussa mahdollisesti kulkevat syöpäriskit on hyvä tiedostaa, jolloin voi tehostaa tarkkailua esimerkiksi iho- tai rintasyövän varalta. Tulevaisuudessa geenitietoja tullaan todennäköisesti hyödyntämään yhä enemmän erityisesti sairausriskien arvioimisessa, jolloin saamme entistä tarkempaa tietoa perimästämme.

Mitokondriaalinen perimä kulkee äidiltä lapselle

Mitokondriot ovat monin tavoin poikkeuksellisia soluelimiä. Ne ovat välttämättömiä solujen toiminnalle tuottaen suurimman osan solun tarvitsemasta energiasta. Lisäksi ne ovat soluelimistä ainoita, jotka sisältävät omaa DNA:ta. Koska mitokondriot peritään äidiltä, äidin elinikä vaikuttaa isän elinikää enemmän lapsen pitkäikäisyyteen. Vaikka mitokondrioissa on tieto osalle niiden rakennusosista, suurin osa niiden perimästä on peräisin tumasta. Näin ollen myös isän perimällä on merkitystä mitokondrioiden toiminnalle.

Mitokondrion oman perimän ajatellaan olevan seurausta sen syntytavasta – uskotaan, että elämän kehittyessä aitotumallinen solu on nielaissut sisäänsä bakteerin, joka sittemmin kehittyi solun sisällä symbioosissa eläväksi mitokondrioksi. Tässä yhteistyössä mitokondrio tuottaa solulle energiaa ja solu tarjoaa mitokondriolle sopivan elinympäristön. Useat asiat tukevat tätä teoriaa: mitokondriot ovat samankokoisia kuin bakteerit, niillä on oma perimä, ja ne kykenevät lisääntymään itsenäisesti jakautumalla. Tällainen bakteerin kumppanikseen ottanut solu on ollut toiminnaltaan ylivertainen muihin soluihin nähden, ja luonnonvalinta on suosinut niiden lisääntymistä. Nykyisin kaikissa soluissamme punasoluja lukuun ottamatta on mitokondrioita.

Mitokondrioiden syntytarina selittää myös sen, miksi niiden on havaittu olevan tuman DNA:ta alttiimpia mutaatioille. Mitokondrioiden DNA:n korjauskoneisto on nimittäin huomattavasti heikompi kuin aitotumallisen solun tumassa oleva koneisto. Heikon korjauskoneiston lisäksi mitokondriot kuormittuvat oksidatiivisesta stressistä, jota syntyy energiantuotannon yhteydessä. Eläinmalleilla on havaittu, että puutokset mitokondrioiden DNA:n korjauskoneistossa lyhentävät elinikää.

Mitokondrioiden perimä voidaan jakaa sen geneettisen materiaalin mukaan eri haplotyyppeihin. Eri haplotyyppien on havaittu olevan yhteydessä useisiin sairauksiin. Kuten blogin ensimmäisessä tekstissä on kerrottu, tietty haplotyyppi voi myös edesauttaa pitkäikäisyyttä. Erikoista kyllä, eri haplotyyppien rikastuminen ikäihmisiin vaikuttaa olevan riippuvaista ihmisryhmästä – mikä lisää elinikää Suomessa, ei välttämättä tee sitä muissa maissa. Tämä ilmiö johtunee erilaisen elinympäristön lisäksi siitä, että mitokondriaalinen DNA toimii kehossa aina yhdessä elimistön muun DNA:n kanssa.

Suolistomikrobit tuovat oman perimänsä osaksi sinua

Suolistomikrobeja ovat esimerkiksi bakteerit, hiivat ja virukset, joita on kehossamme jopa noin 1,5 kiloa. Suolistomikrobien muodostamaa kokonaisuutta, mikrobiomia, voidaan sanoa myös ihmisen kolmanneksi perimäksi – jokainen mikrobi kun kantaa sisällään omaa perimäänsä. Mikrobien suuren määrän vuoksi niiden yhteenlaskettujen geenien määrä on itse asiassa suurempi kuin ihmisen perimä.

Siinä missä vanhemmilta saatu tuman ja mitokondrioiden perimä on ennalta määrätty, voi suolistomikrobien perimään osaltaan itse vaikuttaa. Uusimmat tutkimukset antavat nimittäin viitteitä siitä, että ruokavalio ja liikunta muokkaavat suolistomikrobiston koostumusta ja siten myös sen perimää. Ruokavalion osalta erityisesti ravintokuidun määrä vaikuttaa suolen mikrobisisältöön. Uusia mikrobistoa muokkaavia ravintoaineita tutkitaan kiivaasti ja tulokset vaikuttavat lupaavilta.

Kehon DNA-yhteisöt yhdessä vaikuttavat elinikään

Kehon eri DNA yhteisöt keskustelevat keskenään monin eri keinoin. Mitokondriot tarvitsevat toimiakseen paljon tuman geenien koodaamia rakennusaineita ja ne myös keskustelevat tuman kanssa proteiinien ja RNA:n avulla. Viestit eivät kuitenkaan kulje ainoastaan tumasta mitokondrioihin vaan myös päinvastoin. Solun tasapainon kannalta nämä viestit ovat olennaisia, ja muutokset viestinnässä voivat johtaa häiriöihin solun toiminnassa, vaikuttaen mahdollisesti myös solun ikääntymiseen.

Samoin viestintä mikrobiomin ja perimän välillä on olennaista kehon toiminnan kannalta. Arvellaan, että mikrobiomi voi myös osaltaan auttaa kehoa sopeutumaan vallitsevaan ympäristöön. Toistaiseksi tiedetään, että immuunijärjestelmä voi kuljettaa viestejä mikrobien ja kudosten välillä, mutta kaikkia kommunikointireittejä ei vielä tunneta. Yksi suuri tiedeuutinen viimevuosina on ollut suolistomikrobien löytyminen aivoista, joka avasi kokonaan uuden näkökulman bakteerien ja kudosten vuorovaikutukselle.

Toistaiseksi tutkimukset ovat tyypillisesti keskittyneet yhteen kehon DNA-yhteisöön kerrallaan, jolloin kehon toiminnasta tai ikääntymisestä on haastava muodostaa kokonaiskuvaa. Tiedetään kuitenkin, että kehon kaikki DNA-yhteisöt muuttuvat vanhenemisen seurauksena. Erityisesti mutaatioille altis mitokondriaalinen DNA ja ympäristöön reagoiva suolistomikrobisto muuttuvat vanhetessa, mutta myös tuman perimään kertyy sattumanvaraisia mutaatioita, jotka muuttavat perimää ja mahdollisesti myös sen toimintaa.

Tulevaisuudessa toivottavasti ymmärrämme näiden kolmen DNA-yhteisön vuorovaikutusta ja toimintaa entistä paremmin.

Lähteet:

  • Garagnani, P., Pirazzini, C., Giuliani, C., Candela, M., Brigidi, P., Sevini, F., et al. (2014). The three genetics (nuclear DNA, mitochondrial DNA, and gut microbiome) of longevity in humans considered as metaorganisms. BioMed Research International, 2014, 560340.
  • Bar-Yaacov, D., Blumberg, A., & Mishmar, D. (2012). Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochimica Et Biophysica Acta, 1819(9-10), 1107-1111.
  • Forsythe, P., Kunze, W. A., & Bienenstock, J. (2012). On communication between gut microbes and the brain. Current Opinion in Gastroenterology, 28(6), 557-562.
  • Bar-Yaacov, D., Blumberg, A., & Mishmar, D. (2012). Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochimica Et Biophysica Acta, 1819(9-10), 1107-1111.
  • Franceschi, C., Valensin, S., Bonafe, M., Paolisso, G., Yashin, A. I., Monti, D., et al. (2000). The network and the remodeling theories of aging: Historical background and new perspectives. Experimental Gerontology, 35(6-7), 879-896.
  • Morgan, X. C., Segata, N., & Huttenhower, C. (2013). Biodiversity and functional genomics in the human microbiome. Trends in Genetics : TIG, 29(1), 51-58.
  • Munukka, E., Ahtiainen, J. P., Puigbo, P., Jalkanen, S., Pahkala, K., Keskitalo, A., et al. (2018). Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Frontiers in Microbiology, 9, 2323.
  • Nagpal, R., Mainali, R., Ahmadi, S., Wang, S., Singh, R., Kavanagh, K., et al. (2018). Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging, 4(4), 267-285.
  • Santoro, A., Salvioli, S., Raule, N., Capri, M., Sevini, F., Valensin, S., et al. (2006). Mitochondrial DNA involvement in human longevity. Biochimica Et Biophysica Acta, 1757(9-10), 1388-1399.

Suolisto vanhenemisen ohjaksissa

Teksti on kirjoitettu yhteistyössä Satu Pekkalan (FT, bakteriologian dosentti) kanssa.

Suolistomikrobit ovat olleet mediassa pinnalla jo vuosia. Onpa suolistoa tituleerattu jopa elimistön toisiksi aivoiksikin. Tuoreet tutkimukset ovat paljastaneet suolistolla olevan yhä moninaisempia rooleja terveyden ylläpidossa. Voisivatko suolistomikrobit vaikuttaa myös vanhenemiseen?

Mistä tietää, onko bakteeri ystävä vai vihollinen? Kuva: Pixabay

Mikrobiomilla tarkoitetaan ihmistä asuttavien mikrobien muodostamaa kokonaisuutta. Mikrobeja ovat esimerkiksi bakteerit, hiivat ja virukset. Ne ovat kooltaan niin pieniä, ettei niitä voi havaita paljain silmin. Ihmisellä on suolistoa asuttavat mikrobit painavat peräti noin 1,5 kiloa. Erilaisia mikrobiomeja on myös esimerkiksi iholla ja kehon limakalvoilla. Ihmisen oman mikrobiomin muodostuminen alkaa viimeistään syntymästä ja muovautuu suuresti elinkaaren aikana. Tämä teksti keskittyy suoliston mikrobiomiin, joka on kehomme suurin ja monimuotoisin bakteeriyhdyskunta. 

Bakteerit aiheuttavat sairauksia – mutta myös pitävät sinut terveenä

Perinteisesti ajatellaan, että bakteereista on lähinnä harmia: ne aiheuttavat erilaisia tulehduksia ja tauteja. Nykyisin kuitenkin tiedetään, että monet mikrobit – bakteerit mukaan lukien – ovat erottamaton ja tärkeä osa ihmiskehoa. Ne ylläpitävät muuan muassa ihon ja suoliston terveyttä estäen haitallisten mikrobien kasvun. Mikrobit auttavat sinua myös ravintoaineiden imeytymisessä ja K-vitamiinin tuottamisessa.

Mikrobiomia kutsutaan myös ihmisen toiseksi perimäksi, sillä mikrobit tuovat oman geneettisen materiaalinsa yksilön kehoon. Mikrobien suuren määrän vuoksi niiden perimässä on itse asiassa jopa enemmän geenejä kuin ihmisessä. Mikrobiomin tiedetään vaikuttavan esimerkiksi sairastumisalttiuteen. Meitä yksinkertaisemmilla eliöillä, kuten jyrsijöillä, mikrobien on osoitettu vaikuttavan jopa isäntänsä vanhenemisnopeuteen ja elinikään.

Mikrobiomi muuttuu vanhetessa

Mikrobiomin suurimmat muutokset ajoittuvat erityisesti varhaislapsuuteen ja vanhuuteen. Kiinnostavaa kyllä, samoihin ikäkausiin ajoittuu myös immuunipuolustuksen epävakaus, viitaten siihen, että mikrobiomi ja immuunipuolustus kehittyvät ja ikääntyvät yhdessä.

Vanhenemisen yksi erityispiirre on alttius erilaisille tulehduksille. On havaittu, että suoliston mikrobiomilla voi olla tärkeä rooli tulehdustilojen kehittymisessä. Vanhenemisen yhteydessä puhutaankin dysbioosista, eli mikrobitasapainon häiriötilasta. Häiriötila voi olla yksinkertaisesti mikrobiomin yksipuolisuutta, mutta sen voivat aiheuttaa myös muutokset suolen toiminnassa. Dysbioosi puolestaan altistaa useille banhenemiseen liittyville sairauksille, kuten sydän- ja verisuonitaudeille, Alzheimerin taudille ja dementialle. Suoliston bakteerit voivat siis osaltaan vaikuttaa vanhenemiseen, tai toisaalta, ikäntyminen voi muuttaa suoliston bakteereja. Yhtenä tärkeänä tekijänä voivat olla tiettyjen bakteerien tuottamat, tulehdusta hillitsevät tekijät. Jos tällaiset bakteerit vähenevät ikääntyessä, voisi se selittää myös mikrobiomin, vanhenemisen ja tulehduksen välisen yhteyden.

Ruokavalio ja ympäristö muokkaavat suoliston mikrobiomia

Ruokavalion on arveltu olevan suoliston mikrobiomin päävaikuttaja. Tämä käy ilmi erityisesti eläimillä tehdyissä kokeissa, joissa elinten ruokavalio ja elinympäristö on tarkoin kontrolloitu. Sama pätee myös tarkasteltaessa suuria ihmisjoukkoja – sen sijaan epäselvää on vielä, missä määrin yksittäinen ihminen voi suolistobakteereihinsa pelkällä ruokavaliolla vaikuttaa. Erilaisia ruokavalioita, kuten välimeren ruokavaliota ja ketogeenistä ruokavaliota on tutkittu paljonkin, mutta tulokset ovat osittain ristiriitaisia. Toistaiseksi ainakin ravintokuidun määrä vaikuttaa olevan mikrobiomiin eniten vaikuttava tekijä. Hämmästyttävä kyllä, uusimmissa tutkimuksissa on myös havaittu, että liikunta voi muuttaa suoliston mikrobiomia. Ehkäpä se liittyy liikunnan aikaansaamiin suolen toiminnan muutoksiin.

Viime vuosina on yhä enemmän herätty myös elinympäristön mikrobiomia muovaavaan vaikutukseen. Asia ei ole kuitenkaan niin yksinkertainen, että sopivia bakteereja saisi kehoonsa vähän multaa kääntelemällä ja possua rapsuttelemalla. Ihmisen bakteerikanta kun ei ole sama ympäristön kanssa. Monimuotoinen ympäristö kuitenkin tuntuu olevan avain terveeseen mikrobiomiin, joka puolestaan suojaa meitä monilta sairauksilta, kuten tulehduksilta.

Mikrobiomia muokkaamalla parempaa terveyttä ja pitkää ikää?

Suoliston mikrobiomin tutkimus on vasta alkutaipaleella. Jo pelkästään normaalin mikrobiomin koostumuksen määrittäminen on ollut haasteellista – vaihtelu terveidenkin ihmisten välillä kun on suurta.

Toistaiseksi ainoa suolistomikrobeihin perustuva lääketieteen hoitokeino on ulosteensiirto.Ulosteensiirrossa paksusuoleen siirretään tyypillisesti lähiomaisen niin sanottua tervettä ulostetta. Menetelmää käytetään Suomessa tällä hetkellä vain hankalan antibioottiripulin hoitoon. Maailmalla on kuitenkin tutkittu siirtoa jopa lihavuuden hoitokeinona, tosin huonoin menestyksin.

Muutokset suoliston mikrobiomissa liittyvät useisiin eri sairauksiin ja vanhenemiseen. Niinpä mikrobiomin koostumuksen ja toiminnan ymmärtäminen voisi tarjota uudenlaisia, tiettyihin mikrobikantoihin perustuvia hoitomahdollisuuksia. Tulevaisuudessa erilaisia sairauksia voidaan mahdollisesti ehkäistä ja vanhenemista hidastaa suolistomikrobeja muokkaavan ruokavalion ja liikunnan avulla, tai jopa siirtämällä ulosteen sijaan tiettyä, hyvää mikrobia suolistoon.

Vanhenemiseen liittyen näyttäisi ainakin siltä, että kotona eläminen ”laitostumisen” sijaan rikastuttaisi mikrobiomia. Nähtäväksi kuitenkin jää, tuoko se pidempää ikää pitkällä tähtäimellä.

Lisää suolistoaiheista tietoa löydät Satun suolistoblogista.

Lähteet:

  • https://www.suolistoblogi.com/
  • https://www.duodecimlehti.fi/lehti/2013/22/duo11328
  • Qin J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464(7285):59-65.
  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI: Host-bacterial mutualism in the human intestine. Science 2005, 307(5717):1915-1920.
  • Aitken JD, Gewirtz AT: Gut microbiota in 2012: Toward understanding and manipulating the gut microbiota. Nat Rev Gastroenterol Hepatol 2013, 10(2):72-74.
  • Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Makela MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T: Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 2012, 109(21):8334-8339.
  • Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012, 13(9):R79-2012-13-9-r79.
  • Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H: Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging 2018, 4(4):267-285.
  • Buford TW: (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 2017, 5(1):80-017-0296-0.
  • Han B, Sivaramakrishnan P, Lin CJ, Neve IAA, He J, Tay LWR, Sowa JN, Sizovs A, Du G, Wang J, Herman C, Wang MC: Microbial Genetic Composition Tunes Host Longevity. Cell 2017, 169(7):1249-1262.e13.
  • Munukka E, Ahtiainen JP, Puigbo P, Jalkanen S, Pahkala K, Keskitalo A, Kujala UM, Pietila S, Hollmen M, Elo L, Huovinen P, D’Auria G, Pekkala S: Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women. Front Microbiol 2018, 9:2323.