Vanhenemisen teoriat: Miksi vanheneminen tapahtuu?

Teksti on kirjoitettu yhdessä Saara Marttilan (FT, molekyylibiologi, gerontologi) kanssa.

Yksi yleisimmistä harhaluuloista vanhenemiseen liittyen on, että vanhenemme ja lopulta kuolemme, jotta nuoremmalle ja hyväkuntoisemmalle sukupolvelle tulisi tilaa. Tämä ei pidä paikkaansa, vaan on ilmeinen kehäpäätelmä. Jos vanhenemista ei tapahtuisi, edellinen sukupolvi ei olisi sen huonommassa kunnossa kuin seuraavakaan, eikä siis olisi mitään erityistä syytä tehdä sille tilaa. Miksi siis olemme luonnonvalintaan perustuvan evoluution tuoksinassa päätyneet olemaan eliölaji, joka vanhenee?

Vanhenemisen suureen miksi-kysymykseen voidaan vastata usean eri teorian kautta. Kuva: Pixabay

Vanhenemisteorioiden on tarkoitus vastata kysymykseen ”Miksi vanhenemme?” tai hiukan monisanaisemmin muotoiltuna ”Miten olemme päätyneet olemaan eliölaji, joka vanhenee, vaikka vanheneminen heikentääkin yksilön elinkelpoisuutta?”. Rinnakkainen kysymys tälle on ”Millä mekanismeilla vanhenemme?” eli ”Mitkä asiat soluissamme ja kehossamme menee ajan kuluessa rikki?”. Toisinaan nämä kaksi kysymystä menevät sekaisin, vaikka ensimmäiseen onkin haettava selitystä evoluutiobiologiasta ja toiseen solu- ja molekyylibiologiasta. Tässä tekstissä esitellään neljä tällä hetkellä vallalla olevaa vanhenemisen teoriaa.

Nuoren etu voi olla vanhan taakka, erityisesti valintavarjossa

Luonnonvalinta suosii yksilöitä, jotka ovat parhaiten sopeutuneet vallitseviin oloihin ja tuottavat näin suurimman määrän jälkeläisiä. Valintavarjolla tarkoitetaan iän myötä heikkenevää luonnonvalinnan valintapainetta, joka ei riitä poistamaan myöhään ilmeneviä haitallisia ominaisuuksia. Näin ollen ne ominaisuudet, jotka tulevat esiin vasta sen jälkeen, kun yksilö on jo tuottanut suurimman osan jälkikasvustaan säilyvät populaatiossa.

Vanhenemiseen liittyvät muutokset ovat tällaisia valintavarjoon jääviä ominaisuuksia. Valintavarjo selittää vanhenemisen ilmiön säilymisen evoluutiossa – omaisuus säilyy, koska siihen ei kohdistu valintapainetta.

Antagonistinen pleiotropia on melkoinen sanahirviö, mutta ilmiönä toivottavasti helpompi ymmärtää. Pleiotropialla tarkoitetaan tilannetta, jossa sama geeni (tai joukko geenejä) säätelee useaa eri ominaisuutta. Esimerkkinä tästä on geenijoukko, joka säätelee sekä juoksukykyä että elinikää.

Antagonistinen puolestaan tarkoittaa vastavaikutteista tai päinvastaista. Kun nämä kaksi termiä yhdistetään, puhutaan ilmiöstä, jossa samalla geenillä on sekä positiivisia että negatiivisia vaikutuksia yksilössä. Vanhenemisen kohdalla antagonistisella pleiotropialla viitataan tilanteeseen, jossa tietty geeni (tai ominaisuus) on hyödyllinen varhain, mutta haitallinen myöhemmin elämässä. Antagonistinen pleiotropia on myös sidoksissa valintavarjoon, voi ajatella, että myöhemmin elämässä ilmi tuleva ominaisuus jää nimenomaan valintavarjoon.

Vaikka yleisimmin hyväksytyt vanhenemisteoriat ovat alla esitetyt kertakäyttöisen kehon teoria sekä vanhenemisen kehitysteoria, ne molemmat noudattavat valintavarjon ja antagonistisen pleiotropian periaatteita.

Tasapainottelua lisääntymisen ja oman kehon korjaamisen välillä

Kertakäyttöisen kehon teoria lähtee ajatuksesta, että luonnossa energia on aina rajallinen resurssi, ja sen käyttö on optimoitava. Vaakakupeissa ovat lisääntyminen ja oman kehon kunnossapito.

Luonnossa kuolema korjaa todennäköisesti jonkin ulkoisen syyn, siis saaliiksi joutumisen, nälkiintymisen tai onnettomuuden seurauksena. Pitkäikäisyys ei siis ole erityisen todennäköistä, vaikka suurimman osan energiastaan käyttäisikin kehoon kertyvien vaurioiden, esimerkiksi DNA:n mutaatioiden korjaamiseen. Kehoa kannattaa korjata vain sen verran, että se pysyy kunnossa sen aikaa kuin on muutenkin todennäköistä säilyä hengissä. Kaikki muu energia kannattaa suunnata lisääntymiseen.

Kertakäyttöisen kehon teorian mukaan vanheneminen on siis seurausta erilaisista kehoon ja soluihin kertyvistä, sattumanvaraisista virheistä ja vaurioista, joiden annetaan tapahtua, koska korjausmekanismit ovat vain riittävän hyviä, eivät täydellisiä. Me nykyihmiset olemme pääaisassa turvassa nälkäkuolemalta ja saaliiksi joutumiselta, joten me pysymme elossa niin kauan, että nämä sattumanvariaset vauriot ja virheet alkavat näkyä erilaisina vaivoina ja sairauksina. Toisin sanoen elämme niin turvattua elämää, että ehdimme tulla vanhoiksi.

Vanheneminen käynnistyy, kun kasvu ja kehitys eivät pysähdy

Uusimpana teorioiden joukkoon on tullut vanhenemisen kehitysteoria, jonka mukaan vanheneminen on kasvun ja kehityksen solutason tapahtumien tarkoituksetonta jatkumista. Tämän teorian lähtökohta on, että kasvun ja kehityksen tapahtuminen on yksilön elämässä ensisijaista, onhan se ehdoton edellytys sille, että yksilö voi saada omia jälkeläisiä ja siirtää geeninsä eteenpäin. Koska tämä on niin tärkeää, valintapaine tämän prosessin hidastamiseksi tai pysäyttämiseksi on erittäin heikko. Niinpä nämä kasvun ja kehityksen prosessit jatkuvat vielä senkin jälkeen, kun varsinainen kehitys on valmis, eli yksilöstä on tullut lisääntymiskykyinen aikuinen. Erinomainen esimerkki tästä on silmän linssin jatkuvasta kasvusta seuraava, ikään liittyvä likinäkö. Kehossa olevat prosessit siis jatkuvat aiheuttaen ongelmia vasta varttuneella iällä.

Mikään teorioista ei ole ylitse muiden

Mitä vanhenemisen teorioista sitten on paras ja eniten oikeassa? Tähän tuskin saadaan yksiselitteistä vastausta. Jos vanheneminen esimerkiksi olisi tulos pelkästään sattumanvaraisten virheiden karttumisesta, miksi se olisi niin samanlaista eliölajista toiseen? Toisaalta, jos vanheneminen se olisi seurausta pelkästään kasvun ja kehityksen tarkoituksettomasta jatkumisesta, miksi yksilöiden välillä havaitaan niin valtavia eroja? Vanhenemisen teoriat selittävät tiettyjä piirteitä vanhenemisesta, mutta yksikään ei kata niistä kaikkia.

Lähteet:

  • Gerontologia (Duodecim, 2022), Luku 15, ”Biologisen vanhenemisen teoriat”
  • Kirkwood, T. B., & Austad, S. N. (2000). Why do we age? Nature, 408(6809), 233–238.

Johtaako vanhenemisen hidastaminen aina ongelmiin?

Vanhenemisen hidastaminen on yksi biogerontologian kiehtovimmista tutkimusaiheista. Vaikka lupaavia keinoja toisinaan löydetään, harvoin pysähdytään miettimään sitä, mihin vanhenemisen hidastaminen tai estäminen oikeastaan perustuu. Johtaako vanhenemisen hidastaminen väistämättä ongelmiin?

Ikääntymisen hidastamisen tarjoiluehdotus. Kuva: Pixabay.

Vastauksia pitkän iän salaisuudeksi on varmasti yhtä monta kuin on vastaajaakin. Oikea ruokavalio ja riittävä liikunta tuntuvat pitävän pintansa, samoin omien vanhempien valitseminen viisaasti.  Kun puolestaan puhutaan vanhenemisen hidastamisesta tai estämisestä, riippuu vastaus todennäköisesti vastaajan näkemyksestä. Näkemyksestä riippuen vanhenemiseen ei joko voida puuttua lainkaan, sitä voidaan hidastaa tai se voidaan jopa kokonaan estää. Mihin koulukuntaan itse kuulut? 

Vanhenemisen estäminen johtaa vakaviin sivuvaikutuksiin

Yksi evolutiivisista ikääntymisteorioista esittää, että vanheneminen kulkee perimässä, ja on luonnonvalinnan ulottumattomissa. Tällä viitataan siihen, että evoluutio ei suosi pitkään eläviä yksilöitä, sillä eläimet ehtivät menehtyä luonnon muihin haasteisiin ennen varttunutta ikää.

Näin ollen perimässä rikastuvat nimenomaan nuorelle yksilölle olennaiset geenit, ja samalla on rikastunut geenejä/mutaatioita, jotka johtavat kuolemaan vanhemmalla iällä.

Jos vanhanemisen ajatellaan olevan seurausta perimästä, joka suosii nuoressa iässä hyödyllisiä geenejä, ei vanhenemiseen kannata puuttua. Vanhenemisen kajoaminen tarkoittaisi nimittäin myös kajoamista niihin geeneihin, jotka ovat nuorelle yksilölle välttämättömiä. Tästä saattaisi seurata jopa kuolemaan johtavia sivuvaikutuksia nuorella iällä. Näin ollen vanhenemisen estäminen nähdään mahdottomana, ja vanhenemisen tutkimus täyttää vain tutkijoiden tiedonnälkää.

Vanhenemista voidaan hidastaa kääntämällä kelloa taaksepäin

Ohjelmoidun ikääntymisen teoriat perustuvat ajatukseen, että vanheneminen on väistämätön prosessi, joka on ohjelmoitu meihin. Tämän teorian alle voidaan katsoa kuuluvaksi esimerkiksi telomeerien pituuteen keskittyvä ikääntymisteoria. Telomeerit suojaavat kromosomien päitä ja niiden kulumisen ajatellaan johtavan solujen kuolemaan ja sitä kautta kehon vanhenemiseen.

Ohjelmoituun ikääntymiseen luottavat tutkijat uskovat siihen, että jos vanheneminen kerran on ohjelmoitu prosessi, voidaan kelloja myös kääntää siten, että vanhenemista saadaan ainakin hidastettua. Siksipä katseet ovat kääntyneet biologisen iän mittareihin, epigeneettisiin kelloihin, jotka ovat osoittautuneet varsin tarkoiksi vanhenemisen mittareiksi. Toistaiseksi biologista ikää on saatu nuorennettua muutamalla vuodella aavistuksen kyseenalaisella usean lääkkeen yhdistelmällä, joten yhä etsitään luotettavia ja turvallisia tapoja kääntää kelloa taaksepäin.

Vanhenemisen mekanismeihin voidaan puuttua ja jopa estää vanheneminen

Virheiden karttumisteorioiden kannattajat ovat sikäli onnellisessa asemassa, että heidän mielestään vanhenemiseen voidaan todellakin puuttua. He uskovat, että vanheneminen on seurausta kehossa tapahtuvista virheistä, jolloin nuo virheet korjaamalla saadaan parhaassa tapauksessa ikuinen ja toimiva keho.

Yksittäisten ikääntymismekanismien muokkaamisesta on viljalti tutkimuksia ja lähestymistapoja on monia. Tutkimuksissa on muun muassa tehostettu puolustusmekanismien toimintaa happiradikaaleja vastaan tai vaikkapa poistettu ikääntyneitä (senesenssejä) soluja jättäen tilalle vain tuliterät, hyvässä iskussa olevat solut. Positiivinen tulos eliniän kannalta voidaan saada aikaan monin keinoin.

Lupaavimman elinikää pidentävät yhdisteet kuitenkin vaikuttavat useaan eri ikääntymisen mekanismiin yhtäaikaisesti, esimerkkinä nuoruudenlähteeksi tituleerattu resveratroli. Resveratroli on muun muassa marjoissa esiintyvä fenoliyhdiste, jonka on todettu hidastavan ikääntymistä useilla eliöillä. Ikääntymisen lisäksi resveratroli vaikuttaisi estävän myös lihomista ja syövän kehittymistä, tarjoten näin suojaa usealta eri elinikää lyhentävältä ilmiöltä. Haasteena kuitenkin on juuri resveratrolin moniulotteisuus, jolloin sen kokonaisvaltaisia vaikutuksia elimistössä on hankala arvioida.

Oma ikääntymisteoriani – onko sitä?

Biogerentologin on ennemmin tai myöhemmin pohdittava omaa näkemystään vanhenemisteorioihin liittyen. Teorioiden tuntemus auttaa paitsi muodostamaan oman näkemyksen tutkimuksensa taustaksi, myös ymmärtämään ja kunnioittamaan muiden näkemyksiä.

Oma näkemykseni varmasti kypsyy vielä. Tällä hetkellä siinä on piirteitä kaikista kolmesta teoriapohjasta. Geeniperimä on tutkimusten perusteella vahva eliniän määrittäjä, ja tarkoituksenmukainen geeninsäätely on olennaista niin kasvun, kehityksen kuin vanhenemisenkin kannalta. On totta, että tiettyjen geenien toiminnan estäminen vääräaikaisesti varmasti johtaa ongelmiin. Nykyisin kuitenkin geeninsäätelyn tutkimus on edennyt harppauksittain, ja pystymme säätämään geenejä kohdennetusti ja tiettyyn aikaan. Siksi en näe tilannetta niin mustavalkoisena, kuin evolutiivinen teoria antaa ymmärtää.

Myös vanhenemisen hidastaminen, mikäli sitä mitataan eliniän pituutena, vaikuttaisi onnistuvan esimerkiksi kalorirajoitteisella ruokavaliolla. Tiettyjä ikääntymisen mekanismeja on myös onnistuneesti hiljennetty. Mikään yksittäinen teoria ei kuitenkaan ole minulle ylitse muiden. Vanheneminen on niin monimutkainen ja monella tasolla esiintyvä ilmiö, että se vaatii useita teorioita kuvaamaan erilaisia tapahtumaketjuja. Tämä on biogerontologiassa sekä uhka että mahdollisuus – saatat tehdä oletuksia toisen teorian pohjalta, ja päätyä tuloksissasi tukemaan aivan toista. Kaikille teorioille on siis annettava mahdollisuus!

Johtaako vanhenemisen hidastaminen siis aina ongelmiin? Toistaiseksi ymmärrys ja kyky muokata kehon toimintoja on vielä siinä pisteessä, että terveeseen kehoon kajoaminen on enemmän riski kuin mahdollisuus. Sen sijaan oman terveyden huolto ja ylläpito terveellisellä ravinnolla ja riittävällä liikunnalla on kaikille saatavilla olevaa, luonnonmukaista vanhenemisen hidastamista.

Lähteet:

  • Williams GC (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution 11: 398-411.
  • Rose, M. & B. Charlesworth. (1980). A test of evolutionary theories of senescence. Nature 287, 141-142.
  • Jin K: Modern Biological Theories of Aging. Aging Dis 2010, 1(2):72-74.
  • Varela E & Blasco MA (2009). Nobel Prize in Physiology or Medicine: telomeres and telomerase Oncogene. 2010 Mar 18;29(11):1561-5.
  • Horvath S: DNA methylation age of human tissues and cell types. Genome Biol 2013, 14(10):R115-2013-14-10-r115.
  • Fahy, G.M., R.T. Brooke, J.P. Watson, Z. Good, S.S. Vasanawala, H. Maecker, M.D. Leipold, et al. (2019). Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18, e13028.
  • Fairfield KM, Fletcher RH: Vitamins for chronic disease prevention in adults: scientific review. JAMA 2002, 287(23):3116-3126.
  • van Deursen, J.M. (2019). Senolytic therapies for healthy longevity. Science (New York, N.Y.) 364, 636-637.

Vanhenemisen perimmäinen syy – miksi ihmiset kuolevat, mutta hydrat eivät?

Miksi vanheneminen tapahtuu, on ikääntymisteorioiden keskeisimpiä kysymyksiä. Nykyisin tunnetaan jo paljon vanhenemisen prosesseja, mutta missä lymyilee vanhenemisen perimmäinen syy? Vanhenemisen miksi-kysymystä selvitetään evolutiivisten vanhenemisteorioiden kautta. Perimmäinen miksi-kysymys johtaa sen äärelle, onko meidän lajimme edun kannalta kuoltava.

Miksi me vanhenemme ja lopulta kuolemme, on yksi elämän perimmäisistä kysymyksistä. Kuva: Pixabay.

Vanhenemiseen liittyvät suuret kysymykset voidaan jakaa karkeasti kahteen luokkaan: MIKSI me vanhenemme ja MITEN me vanhenemme. Vaikka IkäKRIISI-blogin aiemmat aiheet liikkuvat kielen puolesta miksi-linjalla, luokitellaan ne ikääntymisteorioiden valossa miten-kysymyksen alle. Miksi-kysymys johtaa meidät evolutiivisten ikääntymisteorioiden äärelle.

Miksi -kysymykseen vastataan evoluution kautta

Kuten sana evolutiivinen antaa ymmärtää, viitataan näillä teorioilla sukupolvien myötä tapahtuviin, periytyviin muutoksiin. Oppi-isänä teorioiden taustalla on luonnontieteiden suurmies Darwin. Evolutiivisia ikääntymisteorioita nimitetäänkin myös geneettisiksi ikääntymisteorioiksi. Näiden teorioiden nojalla vanhenemisen ajatellaan ohjautuvan geeneissä kulkevien ominaisuuksien kautta. Tätä ilmiötä puolestaan ajaa luonnonvalinta, jossa elinympäristön kannalta hyödylliset perinnölliset ominaisuudet yleistyvät ja haitalliset harvinaistuvat.

Ajaako perimä vanhenemista?

Yksi varhaisista evolutiivisia ikääntymisen teorioita perusteli ikääntymistä sillä, että meidät on ohjelmoitu vanhenemaan ja kuolemaan. Näin varmistetaan, että ihmisen määrä ei kasva rajattomasti, ja toisaalta myös se, että tulevat sukupolvet pystyvät paremmin mukautumaan muuttuvaan ympäristöön. Tämän teorian nojalla vanhat sukupolvet siis tekevät tilaa uusille, ympäristöön paremmin soveltuville yksilöille.

Vai onko vanheneminen luonnonvalinnan ulottumattomissa?

Edellistä teoriaa on kuitenkin kritisoitu siitä, että luonnonvalinta ei luonnossa elävien eläinten kohdalla ulotu koskemaan vanhenemista, koska eläimet ehtivät menehtyä sairauksiin, petojen kynsiin tai luonnon muihin haasteisiin ennen kuin vanheneminen kunnolla pääsee alkuun. Vaikka eläin pääsisi elämään vanhaksikin, ei vanhenemista kiihdyttävistä geeneistä olisi sille etua.

Toisen teorian mukaan ajatellaankin, että yksilön kannalta olennaisinta on kasvaa sukukypsäksi ja jatkaa sukua mahdollisimman tehokkaasti. Tämän jälkeen yksilö on täyttänyt tehtävänsä oman geenistönsä jatkumisen kannalta, ja on yhdentekevää, mitä yksilölle tämän jälkeen tapahtuu. Näin ollen perimässä on rikastunut suvun jatkumiselle (ja nuorelle yksilölle) olennaiset geenit, mutta toisaalta samalla on voinut myös rikastua geenejä/mutaatioita, jotka johtavat kuolemaan vanhemmalla iällä. Tämän nojalla luonnon valinnalla ei ole ollut keinoja ehkäistä esimerkiksi vanhenemiseen liittyvien sairauksien, kuten sydän- ja verisuonitautien ja syöpien, esiintymistä.

Ikääntymisen estäminen vaatii energiaa

Kolmas teoria puolestaan perustuu aineenvaihdunnasta saatavan energian optimaaliseen jakamiseen kehon ylläpidon ja lisääntymisen välillä. Solujen/kehon ylläpito on järkevää vain niin kauan kuin yksilöllä on mahdollisuus lisääntyä ja selvitä elinympäristössään. Kaikki elimistön keinot estää ikääntymiseen liittyviä ilmiöitä (kuten DNA:n korjausmekanismit) vaativat energiaa, joten on mietittävä tarkkaan, mihin kaikkeen energiaa käytetään. Valoa ei voi niin sanotusti pitää päällä joka ikkunassa, vaan vain siinä huoneessa, missä kulloinkin ollaan.

On siis kaksi tapaa nähdä asia geenien valossa – joko geenit aktiivisesti ajavat vanhenemista, tai sitten vanhenemiseen johtavat geenit rikastuvat tahattomasti. Kolmas näkökulma puolestaan perustuu rajalliseen energianmäärään, jolloin on tarkoin valittava, mihin sähkönsä käyttää.

Hydra on kuolematon yksinkertaisuutensa vuoksi

Helsingin Sanomat julkaisi 4/2020 jutun toistaiseksi ainoasta kuolemattomaksi tiedetystä eliöstä, hydrasta. Hydra on noin sentin mittainen makeissa vesissä elävä polyyppieläin, joka ei tutkimusten mukaan vanhene, saati kuole. Hydrojen vahvuus piilee siinä, että ne ovat riittävän yksinkertaisia – hydran solut eivät ole erilaistuneet eri kudoksiksi, mistä johtuen se kykenee uudistamaan solukkoaan. Lisäksi hydrat kykenevät lisääntymään sekä suvullisesti että suvuttomasti, eli joko pitämään perimänsä tismalleen saman, tai muuttamaan sitä ympäristön muuttuessa.

Hydrankaan tapauksessa kuolemattomuus ei tarkoita sitä, etteikö hydra voisi koskaan kuolla. Hydra elää ikuista elämää vain sille ihanteellisissa olosuhteissa, joissa sitä eivät uhkaa ympäristön vaarat. Kiinnostavaa kyllä, ihanteellisissakin oloissa hydra voi syödä itsensä hengiltä, jos sille antaa rajattomasti ravintoa. Yllättävän inhimillinen sentin mittainen olento siis kyseessä.

Kuolema on hinta monimutkaisuudesta

Kehon kehittyminen monimutkaiseksi asettaa siten myös omat haasteensa sen ylläpidolle, ja linkittyy siten evolutiivisiin ikääntymisteorioihin. Nämä teoriat antavat toisiaan täydentäviä, ja osin vastakkaisiakin, selityksiä vanhenemisen syille. Samalla niiden tulisi vastata myös kysymykseen siitä, miksi kullakin lajilla on sille tyypillinen elinikä? Tätä selitetään elinympäristön määrittämän kuolleisuuden kautta. Jos odotettavissa oleva elinikä lajille tyypillisessä elinympäristössä on lyhyt, luonnonvalinta suosii nopeasti lisääntyviä ja toisaalta nopeasti vanhenevia yksilöitä. Sama käy myös toisin päin, eli jos odotettavissa on, että yksilö selviää pitkälle aikuisuuteen, suosii luonnonvalinta niitä geenejä, jotka edesauttavat tervettä vanhenemista ja kehon ja solujen tehokasta ylläpitoa.

Vaikka nykyisin ihmisillä odotettavissa oleva elinikä pitenee, ovat luonnonvalinnan keinot terveen vanhenemisen tai pidemmän eliniän suhteen rajalliset. Nykyisin lääketieteen korkea taso auttaa myös huonommilla perimän pelikorteilla varustetut ihmiset saavuttamaan pitkän iän, mikä osaltaan estää luonnonvalintaa tapahtumasta. Lisäksi kehomme monimutkaisuus, jossa solut ovat erilaistuneita toiminnallisiski kudoksiksi, tekee mahdottomaksi korvata toimimatonta elintä (ainakaan omin avuin).
Maksamme siis hintaa elimistömme monimutkaisuudesta, ja se hinta on vanheneminen. Toisaalta, olisitko tämän luettuasikaan mieluummin hydra?

Lähteet:

  • Kirkwood, T.B. & S.N. Austad. (2000). Why do we age? Nature 408, 233-238.
  • Kirkwood, T.B. (1977). Evolution of ageing. Nature 270, 301-304.
  • Rose, M. & B. Charlesworth. (1980). A test of evolutionary theories of senescence. Nature 287, 141-142.
  • Goldsmith, T.C. (2015). Is the evolutionary programmed/ non-programmed aging argument moot? Current Aging Science 8, 41-45.
  • Williams GC (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution 11: 398-411.
  • Medawar, P. B (1952). An Unsolved Problem of Biology (Lewis, London).
  • Weismann A. (1889). Essays upon heredity and kindred biological problems. Oxford: Clarendon Press.
  • Bell, G. Evolutionary and nonevolutionary theories of senescence. Am. Nat. 124, 600–603 (1984).
  • Martinez, D.E. (1998). Mortality patterns suggest lack of senescence in hydra. Experimental
  • Gerontology 33, 217-225.
  • https://dynamic.hs.fi/a/2020/hydra/
  • https://www.demographic-research.org/volumes/vol4/1/4-1.pdf