Voiko vanhan kehon nuorentaa?

Vanhenemisesta puhuttaessa keskitytään yleensä ennaltaehkäisyyn tai hidastamiseen. Onko mitään enää tehtävissä sen jälkeen, kun keho on jo vanha ja toiminnaltaan sen mukainen? Ehkä vanheneminen ei olekaan yksisuuntainen tie, vaan on mahdollista kulkea toista kaistaa vastakkaiseen suuntaan.

Kun ikä alkaa painaa, olisiko mahdollista hypätä toiseen suuntaan kulkevaan bussiin? Kuva: Pixabay.

Ja vanhakin nyt nuortuu kuin lapsi leikkimään, ja koukkuselkä suortuu, niin kaikk’ on mielissään kertoo kansanlaulun sanoitus. Monelle vanhuuden vaivat ovat osa arkipäivää ja niistä eroon pääsy todella toivottavaa. Mitäpä jos pystyisimme tosiaan palauttamaan vanhan kehon nuoreksi? Kehon tai kudosten nuorentamista voidaan lähestyä monella eli tavalla, joista osa on jo osoittautunut lupaaviksi. Viimeaikaiset tutkimukset ovat nimittäin antaneet toiveita siitä, että ikääntyneiden kudosten toimintaa voitaisiin palauttaa. Tässä tekstissä nuoruutta etsitään proteiinien ristisidosten purkamisen, entsyymiterapian ja epigeneettisen uudelleenohjelmoinnin kautta.

Proteiinien ristisidosten purkaminen tekee jäykästä taas joustavan

Ikääntyessä proteiinien välisten ristisidosten määrä kasvaa. Nämä sidokset on nimetty osuvasti AGE-termillä (Advanced Glycation End products), josta käy ilmi, että ristisidokset vaativat sokeriosan (glycation) muodostuakseen. Ristisidosten kertyminen on myös diabetekseen liittyvien oireiden, ateroskleroosin ja Alzheimerin taudin taustalla. Terveellä ihmisillä ristisidoksia kertyy hitaasti iän myötä. Ristisidoksia voi näin ollen muodostua vain hyvin pitkäikäisiin rakenneproteiineihin, kuten kollageeniin.

Ristisidosten kertyminen tekee joustavasta rakenteesta, esimerkiksi vesisuonen seinämästä, jäykän. Diabeetikoilla ristisidoksia muodostuu kiihtyneellä tahdilla, koska solut altistuvat suuremmille sokerimäärille. Vanhenemiselle ja diabetekselle yhteinen piirre on ristisidosten aiheuttama sydämen ja verisuonten jäykistyminen. Jo nyt markkinoilla on useita ristisidoksia purkavia lääkevalmisteita, mutta niiden tarkka toimintamekanismi ja hyödyt eri ihmisryhmille ovat vielä selvityksen alla.

Entsyymiterapia tehostaa solujen jätehuoltoa

Lysosomit ovat solujen sisällä olevia pieniä rakkuloita, jotka sisältävät hajottavia entsyymejä. Ne ovat elintärkeä osa solujen jätehuoltojärjestelmää ja niiden toimimattomuus on useiden eri sairauksien taustalla. Iän myötä lysosomien määrä joko vähenee ja/tai niiden toiminta heikkenee, jonka seurauksena soluun kertyy toimimattomia soluelimiä ja niiden osia. Lysosomaalisiin sairauksiin käytettävä entsyymiterapia voisikin olla yksi mahdollisuus muuttaa lysosomien toiminta nuoren kaltaiseksi, mikä voisi osaltaan vähentää vanhenemisen merkkejä.

Entsyymitarapiassa kehoon viedään suonensisäisesti tiettyä entsyymiä, joka siirtyy solun sisälle lysosomeihin tehostaen niiden toimintaa. Entsyymiterapia ei siis korjaa esimerkiksi virheellistä geeniä, vaan tuo soluun lisää haluttua entsyymiä. Entsyymiterapialla voi kuitenkin olla sivuvaikutuksia ja se onnistuu usein epätäydellisesti siten, että entsyymi siirtyy tehokkaasti vain tiettyihin kudoksiin. Erityisen haastavaa on ollut saada entsyymiterapia toimimaan aivoissa, joissa lysosomien toiminnan heikkeneminen näkyy esimerkiksi Alzheimerin tautina.  Entsyymiterapian hintalappukin on vielä varsin korkea tehtäväksi säännöllisesti loppuelämän ajan.

Epigeneettinen uudelleenohjelmointi palauttaa solun toimintoja

Vanheneminen muuttaa DNA:n pinnalla olevia epigeneettisiä merkkiaineita, joista tutkituimpia ovat metyyliryhmät. Näihin merkkeihin perustuvat myös tunnetuimmat biologisen iän mittarit eli epigeneettiset kellot. Nämä epigeneettiset merkit paitsi kertovat biologisesta ikääntymisprosessista, myös vaikuttavat geenien toimintaan. Viime vuonna julkaistiin ensimmäiset todisteet siitä, että epigeneettisten merkkien muuttaminen voi palauttaa solun tai kudoksen toiminnan.

Hiirillä tehdyssä kokeessa silmän hermosolujen epigeneettisiä merkkejä muuttamalla onnistuttiin palauttamaan iän tai sairauden heikentämä näkökyky. Samalla tutkimus antoi uskoa siitä, että solujen DNA voidaan palauttaa epigeneettisiltä merkeiltään nuoren kaltaiseksi, jolloin myös kudoksen toiminta palautuu.

Vanheneminen saattaa tulevaisuudessa olla kaksisuuntainen tie

Tutkimukset viittaavat siihen, että vanheneminen ei ehkä olekaan vain yksisuuntainen tie, vaan on mahdollista kulkea myös vastakkaiseen suuntaan – ainakin hetken matkaa. Edellä kuvattujen keinojen lisäksi blogissa aiemmin käsitellyistä aiheista esimerkiksi geeninsiirto, solujen ympäristön nuorentaminen ja senesenssien solujen poisto voivat olla tulevaisuuden ”nuorennushoitoja”.

Haasteita suunnan muutokselle kuitenkin asettavat muun muassa ikääntymisprosessin monimutkaisuus ja yksilölliset erot. Jotta normaalia kudosten vanhenemista voidaan korjata, tulisi hoidon todennäköisesti kohdistua moniin ikääntymisen mekanismeihin ja kudoksiin samanaikaisesti. Lisäksi jos hoidoilla saavutettuja muutoksia halutaan ylläpitää, tulisi hoidon jatkua loppuelämän ajan. Vielä ei myöskään ole näyttöä siitä, että tietyn toiminnon nuorentaminen lopulta pidentäisi elinikää tai toisi lisää terveitä elinvuosia perusterveille ihmiselle. Nuorennushoitojen kehittymistä odotellessa terveellinen ruokavalio ja riittävä liikunta tarjoavat turvallisen keinon terveiden elinvuosien lisäämiseen.

Lähteet:

  • Engelen, L., Stehouwer, C. D., & Schalkwijk, C. G. (2013). Current therapeutic interventions in the glycation pathway: Evidence from clinical studies. Diabetes, Obesity & Metabolism, 15(8), 677-689.
  • Lu, Y., Brommer, B., Tian, X., Krishnan, A., Meer, M., Wang, C., et al. (2020). Reprogramming to recover youthful epigenetic information and restore vision. Nature, 588(7836), 124-129.
  • Parenti, G., Pignata, C., Vajro, P., & Salerno, M. (2013). New strategies for the treatment of lysosomal storage diseases (review). International Journal of Molecular Medicine, 31(1), 11-20.
  • Solomon, M., & Muro, S. (2017). Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Advanced Drug Delivery Reviews, 118, 109-134.
  • Vasan, S., Foiles, P., & Founds, H. (2003). Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Archives of Biochemistry and Biophysics, 419(1), 89-96.

Biologinen ikä – millä mittarilla lähimmäs totuutta?

Ihmisen biologista ikää voidaan mitata monenlaisilla mittareilla. Mitä useampaa mittaustapaa hyödynnetään, sitä lähemmäs totuutta todennäköisesti päästään. Viimeaikaiset tutkimukset ovat onnistuneet yhdistämään myös psyykkisen terveyden biologisiin vanhenemisprosesseihin.

Biologista ikää voidaan mitata monin keinoin. Mutta mikä on ylitse muiden? Kuva: Unsplash.

Biologisen iän mittarit pyrkivät mittaamaan kehon todellista ikää, joka voi poiketa suurestikin omasta kalenteri-iästä. Tunnetuimmat biologisen iän mittarit perustuvat DNA:n tiettyjen kohtien merkkiaineiden, eli metylaation mittaamiseen. Muitakin vaihtoehtoja biologisen iän mittaamiseen on, ja uusia menetelmiä hiotaan jatkuvasti. Yksittäiset tutkimukset keskittyvät yleensä kuitenkin mittaamaan biologista ikää vain yhdellä tavalla, mikä voi antaa virheellisen kuvan kehon todellisesta iästä.

Eri mittari, eri arvio iästä

Nykyiset biologisen iän mittaustavat voidaan jakaa viiteen eri kategoriaan: telomeerien pituuden, epigeneettisten muutosten, geenien tai proteiinien ilmenemisen ja aineenvaihdunnan tuotteiden mittaamiseen. Alla käyn lyhyesti läpi jokaisen menetelmän mittausperiaatteen.

Telomeerien pituuden mittaaminen tehdään tyypillisimmin veren valkosoluista. Tällöin mitataan DNA-juosteiden päässä olevien toistojaksojen pituutta. Mitä lyhempi telomeeri, sitä useammin solu on jakautunut, ja sitä vanhempi se on.

Epigeneettisten muutosten mittaamiseen on kehitetty useita eri algoritmeja, joita kutsutaan epigeneettisiksi kelloiksi. Menetelmässä mitataan tiettyihin DNA:n kohtiin kiinnittyneitä metyyliryhmiä. On havaittu, että DNA:n tiettyjen kohtien metylointi liittyy ikääntymiseen. Metyyliryhmän kiinnittyminen tiettyyn geeniin tyypillisesti hiljentää sen toiminnan.

Geenien ilmenemisen kokonaisuuden tutkiminen (traskriptomiikka) kertoo mitkä geenit näytteenottohetkellä ovat olleet aktiivisia. Tämä perustuu siihen, että tarkastellaan lähetti-RNA-molekyylejä, jotka välittävät geenien tiedon tuman DNA:sta toiminnalliseksi tuotteeksi. Lähetti-RNA:n lopputuote on tyypillisesti proteiini.

Proteiinien kokonaisuuden (proteomiikka) mittaaminen on idealtaan sama kuin geenien ilmenemisen, mutta nyt ollaankin kiinnostuneita lopputuotteesta, eli proteiinista. Nämä kaksi mittaustapaa voivat kuitenkin antaa hyvin eri tuloksen, sillä pelkkä lähetti-RNA:n määrä ei kerro vastaavan proteiinin määrää, sillä yksittäisestä lähetti-RNA:sta voidaan tuottaa koko joukko samaa proteiinia. Tällaisessa tilanteessa lähetti-RNA:n määrä on pieni, mutta vastaavan proteiinin suuri.

Aineenvaihduntatuotteiden kokonaisuutta (metabolomiikka) mitataan sitäkin tyypillisimmin verestä. Aineenvaihdunnan tuote eli metaboliitti on mikä tahansa yhdiste, joka osallistuu aineenvaihduntaan tai on sen tuote. Yksi metaboliittien mittaamisen hyödyistä on siinä, että metaboliitit ovat itsessään fysiologisesti merkittäviä viestin välittäjiä, toisin kuin edellä mainitut epäsuorasti elimistön tilasta kertovat mittarit, kuten lähetti-RNA:n määrä. Metaboliittien pitoisuudet kuitenkin vaihtelevat esimerkiksi iän ja elintapojen mukaan, mikä on huomioitava tulosten tulkinnassa.

Vaikka kaikki menetelmät tähtäävät biologisen iän selvittämiseen, tutkimuksissa nämä eri menetelmät eivät ole antaneet kovinkaan yhteneväisiä tuloksia. Tämä tarkoittaa käytännössä sitä, että jos verestäsi mitattaisiin oma biologinen ikäsi viidellä eri tavalla, saisit viisi eri vastausta. Jokainen mittari siis mittaa hieman eri asiaa elimistön vanhenemisesta. Tämän vuoksi viimeaikaisissa tutkimuksissa on pyritty yhdistämään useampaa eri mittaria toisiinsa, jotta ihmisen kehon tilasta saataisiin kokonaisvaltaisempi kuva.

Biologiset kellot mittaavat ikääntymisen eri puolia

Useat tutkimukset ovat osoittaneet, ettei telomeerien pituudella ja epigeneettisillä muutoksilla ole vahvaa yhteyttä. Ne siis kuvaavat ikääntymistä eri tavoin. Sen sijaan epigeneettisten kellojen ja geenien ilmenemisen on havaittu olevan yhteydessä toisiinsa, mikä on loogista, sillä metylaatio vaikuttaa geenien toimintaan. Osa ikääntymisen mittareista voi siis antaa samansuuntaisen tuloksen, vaikka keskittyvätkin eri solutason ilmiöihin.

Vastikään julkaistussa tutkimuksessa hyödynnettiin kaikkia viittä biologisen iän määritysmenetelmää. Tulokseksi saatiin, että biologista ikää eniten lisäsivät miessukupuoli, tupakointi, korkea kehonpainoindeksi (BMI) ja metabolinen syndrooma ja masennus. Kaikki edellä mainitut ovat tunnetusti elinikää lyhentäviä tekijöitä. Tässä yhteydessä COVID-19-rokotusten yhteydessä Twitterissä leviävä lause ”COVID-19-rokotus ei muuta DNA:tasi – tupakointi muuttaa” on enemmän kuin ajankohtainen. Kiinnostavaa kyllä, myös masennus pystyttiin yhdistämään useisiin solutason ikääntymisprosesseihin.

Ei ole siis suinkaa yhdentekevää, millä mittarilla biologista ikää mitataan. Lisäksi on huomioitava, että suurin osa tutkimuksista tehdään verestä (seerumi, veren valkosolut), jolloin ei myöskään päästä kiinni siihen, millä nopeudella eri kudokset (esimerkiksi aivot, lihakset, maksa) vanhenevat.

Vaikuttaa kuitenkin siltä, että useaa eri mittaustapaa yhdistämällä saadaan kokonaisvaltaisempi kuva kehon vanhenemisprosesseista, jolloin myös biologisessa iässä päästään lähemmäs totuutta.


Lähteet:

  • Belsky, D. W., Moffitt, T. E., Cohen, A. A., Corcoran, D. L., Levine, M. E., Prinz, J. A., et al. (2018). Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: Do they measure the same thing? American Journal of Epidemiology, 187(6), 1220-1230.
  • Han, L. K. M., Aghajani, M., Clark, S. L., Chan, R. F., Hattab, M. W., Shabalin, A. A., et al. (2018). Epigenetic aging in major depressive disorder. The American Journal of Psychiatry, 175(8), 774-782.
  • Jansen, R., Han, L. K., Verhoeven, J. E., Aberg, K. A., van den Oord, E C, Milaneschi, Y., et al. (2021). An integrative study of five biological clocks in somatic and mental health. eLife, 10, 10.7554/eLife.59479.
  • Jylhava, J., Pedersen, N. L., & Hagg, S. (2017). Biological age predictors. EBioMedicine, 21, 29-36.
  • Li, X., Ploner, A., Wang, Y., Magnusson, P. K., Reynolds, C., Finkel, D., et al. (2020). Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. eLife, 9, 10.7554/eLife.51507.
  • Marioni, R. E., Harris, S. E., Shah, S., McRae, A. F., von Zglinicki, T., Martin-Ruiz, C., et al. (2018). The epigenetic clock and telomere length are independently associated with chronological age and mortality. International Journal of Epidemiology, 45(2), 424-432.
  • Walker, E. R., McGee, R. E., & Druss, B. G. (2015). Mortality in mental disorders and global disease burden implications: A systematic review and meta-analysis. JAMA Psychiatry, 72(4), 334-341.
  • Metabolomiikka – lääketieteellisen tutkimuksen uusi työkalu (duodecimlehti.fi)