Vanhenemisen mekanismit: Miten vanheneminen tapahtuu?

Teksti on kirjoitettu yhdessä Saara Marttilan (FT, molekyylibiologi, gerontologi) kanssa.

Vaikka vanhenemisen merkit näkyvät usein vasta keski-iän korvilla, alkavat vanhenemisprosessit jo nuorena. Näistä solutason muutoksista puhutaan joko vanhenemisen tunnusmerkkeinä tai mekanismeina. Vanhenemisen mekanismit ovat kaikki osasyynä kehon toiminnan heikkenemiselle.

Vanhenemisen mekanismit haurastuttavat kehoa. Kuva: Pixabay

Vanhenemisen tunnusmerkiksi (engl. hallmark of aging) määritellään sellainen biologinen mekanismi, joka tapahtuu normaalin vanhenemisen aikana ja jonka hidastaminen hidastaa vanhenemista ja nopeuttaminen vastaavasti kiihdyttää vanhenemista. Nämä tunnusmerkit voidaan jakaa kolmeen eri luokkaan: vahinkoa aiheuttaviin, vahinkoon reagoiviin ja heikkenemistä aiheuttaviin. Yksittäisiä vanhenemisen mekanismeja voidaan lähteestä riippuen laskea olevan kaikkiaan kaksitoista erilaista.

Vanhenemisen mekanismeista jokainen on tutkitusti osasyynä kehon rappeutumiseen. Jokaisen kohdalla on siis voitu osoittaa, että siihen puuttumalla voidaan pidentää elinikää vähintäänkin banaanikärpäsillä, yhtä lukuun ottamatta myös hiirillä. Ihmisten kohdalla ei voida suoraan todistaa eliniän pitenemistä, mutta on näyttöä siitä, että näihin mekanismeihin puuttumalla voidaan lievittää vanhenemisesta seuraavia vaivoja.

Vahinkoa aiheuttavat mekanismit ovat aina haitallisia

Nimensä mukaisesti vahinko aiheuttavat mekanismit ovat aina tapahtuessaan solulle haitallisia. Tällaisia mekanismeja ovat genomin (DNA:n) epästabiilius, telomeerien lyheneminen, muutokset epigenomissa, proteiinitasapainon häiriöt ja toimimaton makroautofagia. Tässä tekstissä keskitymme näistä jälkimmäiseen.

Makroautofagia on osa kehon kierrätysjärjestelmää, jonka avulla solut poistavat käytöstä esimerkiksi toimimattomia proteiineja, soluelimiä (esim. mitokondrioita) ja patogeenejä (esim. bakteereja). Tehoton tai epätavallisesti toimiva autofagia on monen vanhenemiseen liittyvän sairauden yhteinen piirre. Ihmisillä autofagiaan liittyvien geenien ilmeneminen heikkenee ikääntyessä. On myös havaittu, että erityisen pitkäikäisten ihmisten jälkeläisillä autofagia on aktiivisempaa kuin muilla vastaavan ikäisillä ihmisillä.

On tutkittu, että geneettisesti hiljennetty autofagia kiihdyttää vanhenemista koe-eläimillä. Tätä vastoin makroautofagian tehostamisen on havaittu lisäävän paitsi elinikää myös tehostavan aineenvaihduntaa ja motorisia toimintoja. Ihmisillä, joilla on autofagiaa hiljentävä mutaatio perimässään, on havaittu monenlaisia aineenvaihduntaan, sydän- ja verisuonitauteihin ja hermoston toimintaan liittyviä sairauksia, joista monet muistuttavat oireiltaan ennenaikaista vanhenemista. Sen sijaan makroautofagian lääkkeellisen tehostamisen on havaittu parantavan fyysistä kuntoa ja terveyttä keski-ikäisillä ihmisillä.

Makroautofagian riittävän tehokas toiminta vaikuttaa siten olevan terveen ja terveenä vanhenevan kehon edellytys.

Vahinkoon reagoivat mekanismit voivat olla solulle myös eduksi

Toisin kuin vahinkoa aiheuttavat vanhenemismekanismit, vahinkoon reagoivat mekanismit ovat oikein toimiessaan soluille hyödyksi. Ne esimerkiksi pyrkivät lievittämään aiemmin kuvatuista mekanismeista aiheutuvia haittoja. Liiallisina tai väärään aikaan toimiessaan ne kuitenkin alkavat itsekin aiheuttaa vahinkoa. Tällaisia mekanismeja ovat mitokondrioiden toiminnan häiriöt, senesenssi ja häiriöt ravintoaineisiin liittyvässä signaloinnissa. Seuraavaksi esittelemme näistä viimeisen.

Häiriöt ravintoaineisiin liittyvässä signaloinnissa keskittyvät kolmeen signalointireittiin, joiden välittäjinä toimivat sirtuiinit, insuliinin kaltainen kasvutekijä (IGF-1) ja mTOR (engl. mechanistic target of rapamycin). Nämä signalointireitit ovat säilyneet evoluutiossa hyvin samankaltaisina eliöstä toiseen.

IGF-1 on hormoni, joka edistää ravintoaineiden ottoa soluihin lisäten kudosten kasvua. mTOR puolestaan on solun aineenvaihdunnan säätelijä. IGF-1 ja mTOR -signaloinnin hiljentämisen on havaittu pidentävän elinikää koe-eläinasetelmissa. Ihmisillä matala IGF-1-taso on yhdistetty lyhyeen pituuteen ja pitkään elinikään. Koe-eläimillä on havaittu, että ravintoaineisiin liittyvän signaloinnin hiljentäminen kasvuikäisenä voi johtaa poikkeukselliseen lyhytkasvuisuuteen, mutta aikuisuudessa hiljentäminen parantaa terveyttä ja pidentää elinikää.

Aineenvaihdunnallisiin sairauksiin kehitetyt lääkkeet tyypillisesti vaikuttavat juuri ravintoaineisiin reagoiviin signalointireitteihin, minkä vuoksi samoja lääkkeitä on tutkittu myös vanhenemisen yhteydessä. Esimerkiksi tyypin 2 diabeteksen hoidossa käytetty metformiini hiljentää sekä IGF-1 että mTOR-signalointia. Epidemiologisissa tutkimuksissa metformiinin on raportoitu vähentävän esimerkiksi sydän- ja verisuonitautien riskiä, mutta tämänkaltaisessa tutkimuksessa ei voida luotettavasti poissulkea muita sekoittavia tekijöitä. Yhdysvalloissa onkin suunnitteilla kliininen koe, jossa on tarkoitus kontrolloidusti selvittää metformiinin vaikutusta vanhenemiseen liittyviin sairauksiin terveillä ihmisillä (TAME, Targetting Ageing with Metformin).

Sirtuiinit ovat joukko proteiineja, jotka toimivat yhdistävänä linkkinä energia-aineenvaihdunnan ja eliniän välillä. Sirtuiinit säätelevät esimerkiksi DNA:n korjausta ja mitokondrioiden energian tuottoa. Toisin kuin IGF-1:n ja mTOR:in kohdalla, sirtuiineja halutaan olevan paljon, että DNA:n korjauskoneisto toimisi mahdollisimman tehokkaasti.

Edellä kuvatut kolme signalointireittiä reagoivat siis ravintoaineiden saatavuuteen ja välittävät esimerkiksi kalorirajoituksen elinikää pidentäviä vaikutuksia.

Heikkenemistä aiheuttavat mekanismit ovat seurausta solun tasapainotilan menettämisestä

Heikkenemistä aiheuttavat mekanismit ottavat vallan silloin kun vahinkoa aiheuttavia ja niihin reagoivia mekanismeja ei voida kompensoida ja solu tai kudos suistuu pois tasapainotilasta. Niitä lasketaan olevan kaikkiaan neljä erilaista; kantasolujen toiminnan ja solujen välisen viestinnän häiriöt, matala-asteinen tulehdus ja dysbioosi.

Dysbioosilla tarkoitetaan suoliston mikrobiston epätasapainoa, toisin sanoen puutteellista tai poikkeavaa suoliston mikrobistoa. Dysbioosi puolestaan altistaa useille vanhenemiseen liittyville sairauksille, kuten sydän- ja verisuonitaudeille ja muistisairauksille.

Suolistomikrobiston vaikutusta elinkään on tutkittu eläinmalleilla ulostesiirteiden avulla. Näissä kokeissa on havaittu, että kun siirretään kiihtyneen ikääntymisen mallin mikrobistoa terveelle yksilölle, sen terveys huononee, ja päinvastainen siirre auttaa sairasta yksilö elämään terveempänä ja pidempään. Ulosteensiirteillä on myös pystytty todentamaan suolistomikrobiston rooli vastustuskyvylle ja aivoterveydelle.

Toistaiseksi ei vielä ole pystytty määrittelemään terveyden kannalta yhtä parasta mahdollista mikrobistokokonaisuutta, vaikka yksittäisiä ”hyviä” bakteereja jo tunnetaankin. Tutkimusten nojalla kuitenkin vaikuttaa kiistattomalta, että suoliston bakteerit vaikuttavat vanhenemisen etenemiseen.

Vanhenemisen mekanismeihin puuttuminen voi nuorentaa kehoa

Vanhenemisen tunnusmerkkejä päivitetään jatkuvasti, joten tulevaisuudessa tunnusmerkkien määrä voi muuttua. On hyvä myös ymmärtää, että vanhenemisen mekanismit ovat kytköksissä toisiinsa – vahinkoon reagoivat tai heikkenemistä aiheuttavat mekanismit eivät käynnisty ilman vahinkoa aiheuttavia mekanismeja. Tämän vuoksi mekanismien erottelu toisistaan on osin keinotekoista.

Siinä missä eläinmalleilla voidaan hyvinkin luotettavasti arvioida eri mekanismeihin puuttumisen vaikutusta elinikään johtuen esimerkiksi pienestä geneettisestä vaihtelusta ja hyvin kontrolloiduista olosuhteista, ihmisillä ei tällaiseen tarkkuuteen päästä koskaan. Me eroamme toisistamme paitsi perimän myös elinympäristön ja ravitsemuksen puolesta, ja vaihtelu eliniässä voi olla kymmeniä vuosia. Vanhenemisen mekanismeihin puuttumisen vaikutusta ihmisillä voidaan kuitenkin arvioida esimerkiksi mittaamalla fyysistä kuntoa tai toimintakykyä, ja viime vuosina myös biologista ikää arvioimalla.

Vanhenemisen mekanismeihin puuttumalla voidaan mahdollisesti tulevaisuudessa lykätä vanhenemiseen liittyviä sairauksia ja toiminnanvajauksia, jolloin terve ikääntyminen on mahdollista yhä suuremmalle osalle vanhenevaa väestöä.

Lähteet:

  • Gerontologia (Duodecim, 2022), Luku 16, ”Solun vanheneminen”
  • Kananen Laura, Marttila Saara (2019). Vanhenemisen biologiset mekanismit ja miten niihin voi vaikuttaa. Duodecim 135:1098–106
  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2022). Hallmarks of aging: An expanding universe.
  • Fedintsev, A., & Moskalev, A. (2020). Stochastic non-enzymatic modification of long-lived macromolecules – A missing hallmark of aging. Ageing Research Reviews, 62, 101097.

Mutaatioille alttiit mitokondriot vanhenemisen taustalla

Solun voimalaitosten, eli mitokondrioiden toiminnan heikkeneminen on yksi tunnetuimmista vanhenemiseen liittyvistä ilmiöistä. Koska mitokondriot peritään äidiltä, vaikuttaa äidin elinikä isän elinikää enemmän lapsen pitkäikäisyyteen. Viime vuosina mitokondriot ovat kuitenkin yllättäneet tutkijoita ominaisuuksillaan ja niiden kokonaisvaltainen merkitys vanhenemiseen ja elinikään on vasta selviämässä.

Mitokondriot ovat solujen voimalaitoksia. DNA:n on vaarallista hengailla niiden läheisyydessä. Kuva: Pixabay

Mitokondriot kuvataan usein solujen voimalaitoksia, sillä ne tuottavat suurimman osan solun käyttämästä energiasta. Ne eroavat muista solun sisäisistä asukkaista erityisesti siinä, että niillä on omaa DNA:ta. Tämän erikoislaatuisen ”lisäperimän” eli mtDNA:n roolia vanhenemisessa on perusteltu monin tavoin. Ensimmäiset havainnot liittyivät juuri mitokondrioiden periytymistapaan – äidin eliniän huomattiin vaikuttavan lapsen elinikään isää enemmän. Seuraavaksi havaittiin, että mitokondriaalisen DNA:n tietyt ryhmät ovat yleisiä pitkäikäisillä ihmisillä. Miksi mitokondrioilla sitten on oma perimä ja miten se mahdollisesti vaikuttaa elinikään?

Mitokondrioiden DNA on altis mutaatioille

Mitä vanhemmaksi elämme, sitä enemmän soluissamme, mukaan lukien mitokondrioissa, tapahtuu sattumanvaraisia mutaatioita. Korkealla iällä mutaatioita on kertynyt niin paljon, että osa niistä voi aiheuttaa elimistön toiminnalle ongelmia.

Mitokondrioiden syntytarina selittää sen, miksi niiden DNA:n on havaittu olevan alttiimpaa mutaatioille kuin tuman DNA:n. Koska mitokondrioiden ajatellaan kehittyneen bakteereita, niiden DNA:n korjauskoneisto on huomattavasti alkeellisempi kuin solun tumassa oleva koneisto. Voit verrata tätä tietokoneen ohjelmistoihin – Photoshop nyt vain taipuu aavistuksen parempaan kuvankäsittelyyn kuin Paint. Heikon korjauskoneiston lisäksi mitokondrioiden DNA on varsin suojaton verrattuna tuman sisään huolellisesti pakattuihin kromosomeihin. Lisäksi se altistuu jatkuvasti oksidatiiviselle stressille, jota syntyy mitokondrioissa tapahtuvan energiantuotannon yhteydessä. DNA:n on siten vaarallista hengailla mitokondrioissa. Mitokondrioihin kertyvät mutaatiot voivat edesauttaa esimerkiksi syövän kehittymistä.

Luultavimmin juuri näiden ongelmien vuoksi mitokondriaalinen DNA on aikojen saatossa siirtynyt pikkuhiljaa tuman suojiin. Tumassa osana muuta DNA:ta mitokondriaalinen DNA on sekä paremmassa suojassa, että tuman tehokkaamman DNA:n korjauskoneiston alla. On viitteitä siitä, että DNA:ta siirtyy yhä soluelimistä tumaan, joten on mahdollista, että jonain päivänä mitokondrioiden DNA:kin on saatu säilöttyä kokonaisuudessaan parempaan turvaan.

Mitokondriot yllättävät yhä tutkijoita ominaisuuksillaan

Mitokondrioihin kiistatta kertyy mutaatioita vanhenemisen myötä. Vielä ole kuitenkaan pystytty osoittamaan, että nämä mutaatiot vaikuttaisivat suoraan elinikään. Tästä huolimatta mitokondrioiden toiminta on olennaista terveydelle. On myös havaittu, että verestä mitatun mitokondriaalisen DNA:n määrän väheneminen kertoo kehon hauraudesta ja kohonneesta kuolemanriskistä.

Vaikka ajatus mitokondrioihin liittyvästä vanhenemisen mekanismista on ollut vallalla jo vuosikymmeniä, ei tutkimus näiden voimalaitosten osalta ole suinkaan olet tullut valmiiksi. Viime vuonna tutkimusmaailmaa kohahdutti uutinen, jossa verenkierrosta oli löydetty solujen ulkopuolisia, mutta toimivia mitokondrioita. Näiden soluista karanneiden mitokondrioiden arvellaan toimivan esimerkiksi viestin viejinä kudosten välillä. Niiden merkitystä kehon toiminnalle tutkitaan parhaillaan.

Mitokondrioiden toiminnan heikkeneminen luustolihaksissa voi johtua sekä ikääntymisprosessista että liikunnan vähenemisestä. Monesti vanhenemisen ja liikkumattomuuden vaikutusta onkin hankala erottaa toisistaan. Liikunnan tiedetään kuitenkin parantavan mitokondrioiden toimintaa, vaikkei se kokonaan poistakaan vanhenemisen tuomia vaikutuksia. Liikunta paitsi tehostaa mitokondrioiden toimintaa myös tekee näistä voimalaitoksista turvallisempia, suojaten mitokondrioiden DNA:ta vaurioilta.

Lähteet:

  • Parise G, Brose AN, Tarnopolsky MA. Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Exp Gerontol. 2005 March 01;40(3):173-80.
  • Al Amir Dache Z, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 2020 March 01;34(3):3616-30.
  • Smith AL, Whitehall JC, Bradshaw C, Gay D, Robertson F, Blain AP, et al. Age-associated mitochondrial DNA mutations cause metabolic remodelling that contributes to accelerated intestinal tumorigenesis. Nat Cancer. 2020 October 01;1(10):976-89.
  • Henze K, Martin W. How do mitochondrial genes get into the nucleus? Trends Genet. 2001 July 01;17(7):383-7.
  • Wolf AM. MtDNA mutations and aging-not a closed case after all? Signal Transduct Target Ther. 2021 February 10;6(1):56.
  • Harper C, Gopalan V, Goh J. Exercise rescues mitochondrial coupling in aged skeletal muscle: a comparison of different modalities in preventing sarcopenia. J Transl Med. 2021 February 16;19(1):71-021.
  • Ashar FN, Moes A, Moore AZ, Grove ML, Chaves PHM, Coresh J, et al. Association of mitochondrial DNA levels with frailty and all-cause mortality. J Mol Med (Berl). 2015 February 01;93(2):177-86.
  • Samuels DC. Mitochondrial DNA repeats constrain the life span of mammals. Trends Genet. 2004 May 01;20(5):226-9.
  • Vermulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS, Prolla TA, et al. Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet. 2007 April 01;39(4):540-3.
  • Santoro A, Salvioli S, Raule N, Capri M, Sevini F, Valensin S, et al. Mitochondrial DNA involvement in human longevity. Biochim Biophys Acta. 2006 October 01;1757(9-10):1388-99.

Soluista karanneen DNA:n määrä ennustaa elinikää

Teksti on kirjoitettu yhteistyössä Laura Kanasen (FT, biogerontologi) kanssa.

Perimä on säilötty jokaiseen soluumme DNA:n muodossa. Ihmisillä DNA:ta suojaa soluissa tumakotelo. Joissain tilanteissa DNA:ta kuitenkin päätyy solun ulkopuolelle. Tämä solunulkoisen DNA:n määrä vaikuttaa olevan hyvä ennustamaan elinikää.

DNA:kin  ottaa välillä hatkat. Kuva: Pixabay

DNA:n tehtävä on säilyttää perimä mahdollisimman muuttumattomana. Ihmisillä ja muilla aitotumallisilla DNA:ta suojaa tumakotelo, joka rajaa solun ytimen muusta solusta erilleen. DNA:ta kuitenkin päätyy kehon erilaisissa toiminnoissa solun sisältä myös solunulkoiseksi DNA:ksi. Joskus DNA tosiaan karkaa solusta, mutta sen poistuminen solusta voi olla myös hallittua.

Meillä jokaisella on veressä solunulkoista DNA:ta. Vasta sen kohonnut määrä liittyy terveysongelmiin. Verenkierrossa kulkevaa solunulkoista DNA:ta voidaan hyödyntää paitsi sairauksien diagnosoinnissa myös eliniän ennustamisessa.

Miksi DNA karkaa solun sisältä?

Nykytietämyksen valossa DNA itsessään ei ole aktiivinen toimija soluissamme. DNA:n tehtävänä on olla ohjeena solun rakennusosien valmistamiselle. Arkielämässä DNA:ta voidaan verrata keittokirjaan, joka sisältää ohjeet moniin eri ruokiin, mutta tarvitsee kokin ja sopivat ainekset, jotta ruuat voidaan valmistaa.

Aitotumallisilla eliöillä DNA oleilee tuman ulkopuolella ainoastaan solun jakautuessa, jolloin tumakotelo hajoaa, ja tyypillisesti muodostuu kaksi identtistä tytärsolua. Näin ollen yksi selkeä syy DNA:n päätyä solun ulkopuolelle liittyy solun hallittuun hajoamiseen. Toisaalta solunulkoisen DNA:n määrä kasvaa selkeästi esimerkiksi hyvin vakavissa ruumiinvammoissa, joissa on tapahtunut mittavia kudosvaurioita. Solunulkoisen DNA:n määrän kasvu liittyy siis myös hallitsemattomaan kudosten ja solujen hajoamiseen.

Nykyisin uskotaan myös, että toimivat solut voivat vapauttaa DNA:ta verenkiertoon osana immuunipuolustusta. DNA voikin toimia immuunipuolustusta aktivoivana vaaran signaalina. On myös mahdollista, että kohonnut solunulkoisen DNA:n määrä on seurausta sen tehottomasta poistamisesta verenkierrosta.  

Solunulkoinen DNA ja sairaudet

Solunulkoinen DNA on lupaava, yksinkertainen merkkiaine sydän- ja verisuoniterveyden arvioimiseen. DNA:n määrä veressä kohoaa vakavissa sydäntautitiloissa merkittävästi ja ennustaa, miten tauti etenee. Kohonneen solunulkoisen DNA:n on havaittu liittyvän myös moniin sydän- ja verisuonitautiriskistä kertoviin tekijöihin, kuten korkeaan verenpaineeseen, terveydelle haitallisiin veren rasva-arvoihin ja tulehdukseen.

Myös syövänhoitoon kehitetään jatkuvasti uutta, helposti kerättäviin näytteisiin perustuvaa diagnostiikkaa. Kudosnäytteiden kerääminen on kehoon kajoavaa, eikä sitä voida toistaa yhtä usein kuin vaikkapa verinäytteenottoa. Verinäytettä, eli nestebiopsiaa onkin kehitetty kudospohjaisten analyysien tueksi. Verenkierrosta mitattavan solunulkoinen DNA sisältää DNA:ta useista eri kudoslähteistä. Syöpäpotilailla kiinnostuksen kohteena on yksinomaan syöpäsoluista peräisin oleva solunulkoinen DNA, joka voi auttaa diagnosoimaan ja tyypittämään kehossa olevan syövän sen sijainnista riippumatta.

Näiden lisäksi kohonneen solunulkoisen DNA:n määrän on havaittu muun muassa ennustavan kuolleisuutta tehohoidossa ja verenmyrkytyksen yhteydessä. Myös vanhenemisen myötä esiintyvässä hauraus-raihnaus-oireyhtymän (engl. frailty) yhteydessä solunulkoisen DNA:n määrä on kohonnut.

Solunulkoinen DNA eliniän ennustajana

Ottaen huomioon, että suurempi solunulkoisen DNA:n määrä on niin selvästi merkki sairaudesta, ei liene yllättävää, että solunulkoisen DNA:n määrä ennustaa myös kuolleisuutta normaaliväestössä. Solunulkoisen DNA:n on havaittu ennustavan elinikää niin keski-ikäisillä kuin hyvin iäkkäilläkin ihmisillä. Vaikka korkea solunulkoisen DNA:n määrä liittyy moniin sydän- ja verisuonitauteihin ja niiden riskitekijöihin, ennustaa solunulkoisen DNA:n määrä kuolleisuutta riippumatta siitä, onko ihmisellä kyseinen sairaus vai ei. Solunulkoinen DNA näyttäisikin olevan muista terveysmuuttujista riippumaton, itsenäinen eliniän ennustaja.

Solunulkoinen DNA voi olla tulevaisuudessa hyödyllinen merkkiaine kertomaan useista terveysriskeistä. Solunulkoisen DNA:n etuna on, että se pystytään mittaamaan verestä nopeasti ja edullisesti. Menetelmä vaatii kuitenkin yhä kehittämistä ja lisää laajoja tutkimuksia.

Tällä hetkellä tutkitaan tarkemmin sitä, mikä tarkalleen ottaen on normaalin ja ongelmallisen solunulkoisen DNA:n määrän raja, ja sitä, voiko solunulkoinen DNA edesauttaa tiettyjen sairauksien kehittymistä. On silti pidettävä mielessä, että yksittäinen merkkiaine harvoin riittää kokonaisvaltaiseen terveydentilan arvioimiseen. Solunulkoisen DNA:n määrä voisi kuitenkin toimia tärkeänä osana laajempaa merkkiaineiden kokoelmaa, jolla terveyttä arvioidaan.

Lähteet:

  • Kananen, L., Hurme, M., Jylha, M., Harkanen, T., Koskinen, S., Stenholm, S., et al. (2020). Circulating cell-free DNA level predicts all-cause mortality independent of other predictors in the health 2000 survey. Scientific Reports, 10(1), 13809-020.
  • https://www.duodecimlehti.fi/duo12134
  • Jylhava, J., Lehtimaki, T., Jula, A., Moilanen, L., Kesaniemi, Y. A., Nieminen, M. S., et al. (2014). Circulating cell-free DNA is associated with cardiometabolic risk factors: The health 2000 survey. Atherosclerosis, 233(1), 268-271.
  • Jylhava, J., Nevalainen, T., Marttila, S., Jylha, M., Hervonen, A., & Hurme, M. (2013). Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell, 12(3), 388-397.
  • Polina, I. A., Ilatovskaya, D. V., & DeLeon-Pennell, K. Y. (2020). Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clinica Chimica Acta; International Journal of Clinical Chemistry, 503, 145-150.
  • Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cell-free nucleic acids as biomarkers in cancer patients.Nature Reviews.Cancer, 11(6), 426-437.
  • Song, H., & Cheng, X. W. (2014). Circulating cf-DNA: A promising, noninvasive tool for assessment of early cardio-metabolic risk. Atherosclerosis, 233(1), 307-309.
  • van der Vaart, M., & Pretorius, P. J. (2008). Circulating DNA. its origin and fluctuation. Annals of the New York Academy of Sciences, 1137, 18-26.

Kehon eri DNA-yhteisöt ja elinikä

On yleisesti tunnettua, että perimä vaikuttaa elinikään. Perimällä viitataan yleensä solumme tumassa olevaan DNA:han, mutta kehossamme on todellisuudessa kolme hyvin erilaista DNA-yhteisöä. Nämä eri DNA-yhteisöt toimivat vuorovaikutuksessa keskenään. Vai yhden DNA-sisältöön voit omalla toiminnallasi vaikuttaa.

Perimän eliksiirit tulevat kolmessa pullossa. Kuva: Pixabay

Perimämme on kirjattu DNA-molekyyleihin. Suurin osa solujemme DNA:sta on tuman kromosomeissa olevaa DNA:ta, josta puolet perimme isältä ja puolet äidiltä. Tämän lisäksi soluissa on mitokondriaalista DNA:ta, jonka perimme yksinomaan äidiltä. Kolmannen DNA-yhteisön muodostavat suolistossamme elävät mikrobit. Nämä kolme DNA-yhteisöä muodostavat koko kehossa olevan perimän, joka puolestaan vaikuttaa sairastumisalttiuteen ja elinikään.

Kromosomit kertovat sukusi tarinan

Identtisiä kaksosia lukuun ottamatta meistä jokaisella on ainutkertainen perimä. Perimämme on syntynyt munasolun ja siittiön yhdistyessä, jolloin vanhempiemme geenit yhdistyivät muodostaen uuden yksilön. Koska ihmisellä on 46 kromosomiparia, voi näistä syntyä lukemattomia erilaisia geneettisiä yhdistelmiä uuden ihmisen aluksi.

Saamamme perimä määrää suoraan tiettyjä ominaisuuksiamme. Esimerkiksi silmien väri määräytyy geenien perusteella ilman ympäristön vaikutusta. Sen lisäksi perimä asettaa tietyt rajat useille eri ominaisuuksille, jotka eivät ole pelkästään geeneistä riippuvaisia. Sinulla voi olla esimerkiksi perinnöllinen alttius sydän- ja verisuonitaudeille, mutta jos syöt terveellisesti, liikut riittävästi ja pysyttelet normaalipainossa, ei tämä tauti välttämättä koskaan puhkea. Eliniästä geenit määräävät arviolta noin neljänneksen.

Oman perimän tunteminen voi edesauttaa myös pitkän iän tavoittelua. Mikäli suvussa kulkee esimerkiksi elintapoihin vahvasti liittyviä sairauksia, voi niitä pyrkiä välttämään terveellisillä elintavoilla. Myös suvussa mahdollisesti kulkevat syöpäriskit on hyvä tiedostaa, jolloin voi tehostaa tarkkailua esimerkiksi iho- tai rintasyövän varalta. Tulevaisuudessa geenitietoja tullaan todennäköisesti hyödyntämään yhä enemmän erityisesti sairausriskien arvioimisessa, jolloin saamme entistä tarkempaa tietoa perimästämme.

Mitokondriaalinen perimä kulkee äidiltä lapselle

Mitokondriot ovat monin tavoin poikkeuksellisia soluelimiä. Ne ovat välttämättömiä solujen toiminnalle tuottaen suurimman osan solun tarvitsemasta energiasta. Lisäksi ne ovat soluelimistä ainoita, jotka sisältävät omaa DNA:ta. Koska mitokondriot peritään äidiltä, äidin elinikä vaikuttaa isän elinikää enemmän lapsen pitkäikäisyyteen. Vaikka mitokondrioissa on tieto osalle niiden rakennusosista, suurin osa niiden perimästä on peräisin tumasta. Näin ollen myös isän perimällä on merkitystä mitokondrioiden toiminnalle.

Mitokondrion oman perimän ajatellaan olevan seurausta sen syntytavasta – uskotaan, että elämän kehittyessä aitotumallinen solu on nielaissut sisäänsä bakteerin, joka sittemmin kehittyi solun sisällä symbioosissa eläväksi mitokondrioksi. Tässä yhteistyössä mitokondrio tuottaa solulle energiaa ja solu tarjoaa mitokondriolle sopivan elinympäristön. Useat asiat tukevat tätä teoriaa: mitokondriot ovat samankokoisia kuin bakteerit, niillä on oma perimä, ja ne kykenevät lisääntymään itsenäisesti jakautumalla. Tällainen bakteerin kumppanikseen ottanut solu on ollut toiminnaltaan ylivertainen muihin soluihin nähden, ja luonnonvalinta on suosinut niiden lisääntymistä. Nykyisin kaikissa soluissamme punasoluja lukuun ottamatta on mitokondrioita.

Mitokondrioiden syntytarina selittää myös sen, miksi niiden on havaittu olevan tuman DNA:ta alttiimpia mutaatioille. Mitokondrioiden DNA:n korjauskoneisto on nimittäin huomattavasti heikompi kuin aitotumallisen solun tumassa oleva koneisto. Heikon korjauskoneiston lisäksi mitokondriot kuormittuvat oksidatiivisesta stressistä, jota syntyy energiantuotannon yhteydessä. Eläinmalleilla on havaittu, että puutokset mitokondrioiden DNA:n korjauskoneistossa lyhentävät elinikää.

Mitokondrioiden perimä voidaan jakaa sen geneettisen materiaalin mukaan eri haplotyyppeihin. Eri haplotyyppien on havaittu olevan yhteydessä useisiin sairauksiin. Kuten blogin ensimmäisessä tekstissä on kerrottu, tietty haplotyyppi voi myös edesauttaa pitkäikäisyyttä. Erikoista kyllä, eri haplotyyppien rikastuminen ikäihmisiin vaikuttaa olevan riippuvaista ihmisryhmästä – mikä lisää elinikää Suomessa, ei välttämättä tee sitä muissa maissa. Tämä ilmiö johtunee erilaisen elinympäristön lisäksi siitä, että mitokondriaalinen DNA toimii kehossa aina yhdessä elimistön muun DNA:n kanssa.

Suolistomikrobit tuovat oman perimänsä osaksi sinua

Suolistomikrobeja ovat esimerkiksi bakteerit, hiivat ja virukset, joita on kehossamme jopa noin 1,5 kiloa. Suolistomikrobien muodostamaa kokonaisuutta, mikrobiomia, voidaan sanoa myös ihmisen kolmanneksi perimäksi – jokainen mikrobi kun kantaa sisällään omaa perimäänsä. Mikrobien suuren määrän vuoksi niiden yhteenlaskettujen geenien määrä on itse asiassa suurempi kuin ihmisen perimä.

Siinä missä vanhemmilta saatu tuman ja mitokondrioiden perimä on ennalta määrätty, voi suolistomikrobien perimään osaltaan itse vaikuttaa. Uusimmat tutkimukset antavat nimittäin viitteitä siitä, että ruokavalio ja liikunta muokkaavat suolistomikrobiston koostumusta ja siten myös sen perimää. Ruokavalion osalta erityisesti ravintokuidun määrä vaikuttaa suolen mikrobisisältöön. Uusia mikrobistoa muokkaavia ravintoaineita tutkitaan kiivaasti ja tulokset vaikuttavat lupaavilta.

Kehon DNA-yhteisöt yhdessä vaikuttavat elinikään

Kehon eri DNA yhteisöt keskustelevat keskenään monin eri keinoin. Mitokondriot tarvitsevat toimiakseen paljon tuman geenien koodaamia rakennusaineita ja ne myös keskustelevat tuman kanssa proteiinien ja RNA:n avulla. Viestit eivät kuitenkaan kulje ainoastaan tumasta mitokondrioihin vaan myös päinvastoin. Solun tasapainon kannalta nämä viestit ovat olennaisia, ja muutokset viestinnässä voivat johtaa häiriöihin solun toiminnassa, vaikuttaen mahdollisesti myös solun ikääntymiseen.

Samoin viestintä mikrobiomin ja perimän välillä on olennaista kehon toiminnan kannalta. Arvellaan, että mikrobiomi voi myös osaltaan auttaa kehoa sopeutumaan vallitsevaan ympäristöön. Toistaiseksi tiedetään, että immuunijärjestelmä voi kuljettaa viestejä mikrobien ja kudosten välillä, mutta kaikkia kommunikointireittejä ei vielä tunneta. Yksi suuri tiedeuutinen viimevuosina on ollut suolistomikrobien löytyminen aivoista, joka avasi kokonaan uuden näkökulman bakteerien ja kudosten vuorovaikutukselle.

Toistaiseksi tutkimukset ovat tyypillisesti keskittyneet yhteen kehon DNA-yhteisöön kerrallaan, jolloin kehon toiminnasta tai ikääntymisestä on haastava muodostaa kokonaiskuvaa. Tiedetään kuitenkin, että kehon kaikki DNA-yhteisöt muuttuvat vanhenemisen seurauksena. Erityisesti mutaatioille altis mitokondriaalinen DNA ja ympäristöön reagoiva suolistomikrobisto muuttuvat vanhetessa, mutta myös tuman perimään kertyy sattumanvaraisia mutaatioita, jotka muuttavat perimää ja mahdollisesti myös sen toimintaa.

Tulevaisuudessa toivottavasti ymmärrämme näiden kolmen DNA-yhteisön vuorovaikutusta ja toimintaa entistä paremmin.

Lähteet:

  • Garagnani, P., Pirazzini, C., Giuliani, C., Candela, M., Brigidi, P., Sevini, F., et al. (2014). The three genetics (nuclear DNA, mitochondrial DNA, and gut microbiome) of longevity in humans considered as metaorganisms. BioMed Research International, 2014, 560340.
  • Bar-Yaacov, D., Blumberg, A., & Mishmar, D. (2012). Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochimica Et Biophysica Acta, 1819(9-10), 1107-1111.
  • Forsythe, P., Kunze, W. A., & Bienenstock, J. (2012). On communication between gut microbes and the brain. Current Opinion in Gastroenterology, 28(6), 557-562.
  • Bar-Yaacov, D., Blumberg, A., & Mishmar, D. (2012). Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochimica Et Biophysica Acta, 1819(9-10), 1107-1111.
  • Franceschi, C., Valensin, S., Bonafe, M., Paolisso, G., Yashin, A. I., Monti, D., et al. (2000). The network and the remodeling theories of aging: Historical background and new perspectives. Experimental Gerontology, 35(6-7), 879-896.
  • Morgan, X. C., Segata, N., & Huttenhower, C. (2013). Biodiversity and functional genomics in the human microbiome. Trends in Genetics : TIG, 29(1), 51-58.
  • Munukka, E., Ahtiainen, J. P., Puigbo, P., Jalkanen, S., Pahkala, K., Keskitalo, A., et al. (2018). Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Frontiers in Microbiology, 9, 2323.
  • Nagpal, R., Mainali, R., Ahmadi, S., Wang, S., Singh, R., Kavanagh, K., et al. (2018). Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging, 4(4), 267-285.
  • Santoro, A., Salvioli, S., Raule, N., Capri, M., Sevini, F., Valensin, S., et al. (2006). Mitochondrial DNA involvement in human longevity. Biochimica Et Biophysica Acta, 1757(9-10), 1388-1399.

Geenitestit – tarpeellista vai turhaa?

Kaupallisia geenitestejä on nykyisin tarjolla kohtuulliseen hintaan. Testejä myydään monenlaisiin tarkoituksiin, ja esittelyteksteissä luvataan tietoja kaikesta maan ja taivaan välillä. Kannattaako nyt tarttua tilaisuuteen ja tilata geenitesti?

Löytääkö geenitesti elämäsi puuttuvat palaset? Kuva: Pixabay.

Ihmisen perimä, eli geenit koostuvat DNA:sta, joka on ryhmittynyt 23 kromosomipariksi. Kromosomipareista toisen saamme äidiltä ja toisen isältä. Kromosomien DNA-juosteessa puolestaan majailevat geenit. Perinteisesti geeni määritellään pätkäksi DNA-juostetta, joka sisältää tiedon proteiinin valmistamiseen. DNA:n tehtävä on siis säilöä tietoa, kun taas proteiinit ovat solun toiminnallisia yksiköitä.

Saman ihmisen jokainen tumallinen solu sisältää saman geneettisen materiaalin – geenitestillä saadaan siis sama tulos riippumatta siitä, mistä kehon solusta DNA on eristetty. Lisäksi geenimme pysyvät (mutaatioita lukuun ottamatta) muuttumattomina koko elinikämme ajan. Näin ollen geenitieto on pysyvää – perimä ei muutu.

Geenitestaus on trendikästä

Geenitestauksen menetelmät ovat tulleet hintansa puolesta yhä saavutettavimmiksi. Perustestejä myydään jo muutamalla satasella. Geenitietoa on karttunut vinhaa vauhtia heti ihmisen genomin kartoitushankkeen (Human Genome Project), joka valmistui oletetusta aikataulusta etuajassa vuonna 2003. Tämä kolmentoista vuoden massiivinen yhteistyöprojekti paljasti, että ihmisen genomissa olikin oletetun noin 100 000 geenin sijaan vain vaatimattomat noin 20 000 geeniä. Useilla kasveilla on perimässään enemmän geenejä kuin ihmisellä. Geenien määrä ei siis ole ihmisen monimutkaisen elimistön takana – olennaisempaa on, miten geenien koodaamaa tietoa hyödynnetään.

Kantaako perimäsi mukanaan ongelmia?

Jos oma perimä syystä tai toisesta huolettaa, on Suomessa tarjolla perinnöllisyysneuvontaa. Tyypillisesti syy hakeutua tähän vapaaehtoiseen neuvontaan on perinnöllisiksi tiedettyjen tai epäiltyjen sairauksien esiintyminen itsellä tai lähisuvussa. Lääketieteen tarpeisiin tehtävä geenitestaus voidaan jakaa diagnostiseen ja prediktiiviseen testaamiseen. Nimensä mukaisesti diagnostisesta geenitestistä on kyse silloin, kun perimästä etsitään syytä jo puhjenneelle sairaudelle. Prediktiivisellä geenitestauksella puolestaan etsitään perimästä riskitekijöitä tietyille sairauksille ennen niiden puhkeamista.

Markkinoilla on sekä laadukkaita testejä että huuhaata

Kun puhutaan kaupallisista, niin sanotuista viihdekäyttöön suunnatuista DNA-testeistä, on markkinoilla suorastaan runsaudenpula. Nyrkkisääntönä testeissä voisi pitää, että mitä enemmän geenitesti lupaa, sitä enemmän hälytyskellojen tulisi soida. Suomenkielisten markkinointisivustojen mainostekstit ovat varsin ympäripyöreitä jopa alalla työskentelevälle. Lisäksi monet lupauksista hämmästyttävät ja kummastuttavat pientä tutkijaa, kuten esimerkiksi harjoittelumotivaation mittaaminen DNA:sta. Sen sijaan esimerkiksi kroonisten sairauksien alttiuden arvioiminen geenivariaatioista on mahdollista, joskin vielä hyvin tulkinnanvaraista. Myös biologisen iän mittaamiseen tarjotaan erilaisia geenitestejä, jotka sinällään mittaavat ihan oikeaa asiaa, mutta tarjoavat yksittäiselle ihmiselle lähinnä viihdearvoa.

Geenisi eivät ole vain sinun – kannat mukanasi tietoa koko suvustasi

Geenitestit eroavat perinteisitä laboratoriokokeista siinä, että tiedot ovat varsin pysyviä. Itsensä testaamiseen sisältyy myös tiettyjä riskejä, joista on hyvä olla tietoinen ennen kuin näytteensä lähettää. Ongelmana kaupallisissa testeissä on mahdollisten väärien tulkintojen lisäksi erityisesti tietoturva. Usein on hankala saada selville, mille kaikille tahoille geenitietosi annetaan – tai pystyykö tätä edes luotettavasti selvittämään.

Lähettämällä DNA-näytteesi et jaa pelkästään tietoa omasta perimästäsi, vaan luovutat tiedot samalla myös lähisukulaisistasi. Kaupalliselle yritykselle lähetetty geenitesti ei siis koske vain sinua. Tilannetta voisi verrata siihen, että lataat puhelimeesi sovelluksen, jonka käyttö edellyttää, että kuvasi ovat kaikkien saatavilla – ja eivät pelkästään ne parhaat selfiet, vaan myös kaikki läheisistä ottamasi kuvat.

Geenitestit osana tulevaisuuden terveydenhuoltoa

Geenitestit ovat todennäköisesti tulevaisuudessa yhä tiiviimmin osa yksilöityä terveydenhoitoa. Testaukselle tulisi kuitenkin olla aina järkevä syy ja tietoturva-asiat kunnossa. Esimerkiksi apteekissa myytävä laktoosi-intoleranssitesti tuntuu näin perus laktoosi-intolerantikon silmissä vähän turhalta – kuka ei itse huomaisi laktoosi-intoleranssiaan ilman testiä? Toki monelle testi voi olla tärkeä selvitettäessä epämääräisempien oireiden vyyhtiä. Toisaalta tieto siitä, ettei geeneistä löydy alttiutta tietylle taudille, voi myös saada ajattelemaan, ettei taudin muistakaan riskitekijöistä tarvitse välittää.

Parhaimmillaan geenitesti voi kuitenkin auttaa ennaltaehkäisemään tai ainakin viivästyttämään sairastumista useisiin sairauksiin tai toisaalta kannustaa yksilöä välttämään omalle geeniperimälleen tyypillisten tautien riskitekijöitä. Näin ollen geenitestit voisivat auttaa meitä elämään terveempinä ja pidempään.

Lähteet: