Kun kehon jätehuolto jää eläkkeelle – autofagia ja vanheneminen

Teksti on kirjoitettu yhteistyössä Jaakko Hentilän (LitT, liikuntafysiologi) kanssa.

Autofagia on elimistön keino hankkiutua eroon vanhoista solujen osista. Prosessi on erittäin tarpeellinen kehon normaalille toiminnalle. Ikääntyessä tämä herkkä järjestelmä voi kuitenkin ryhtyä reistailemaan, jolloin soluihin alkaa kertyä haitallisia aineita. Tehoton tai epätavallisesti toimiva autofagia on monen vanhenemiseen liittyvän sairauden yhteinen piirre. Tämän vuoksi autofagian tehostaminen tai hienosäätö voisi olla ratkaisu paitsi sairauksien ennaltaehkäisemiseen ja hoitoon, myös toimintakykyisempään vanhenemiseen.

Kun kehoa ei enää nappaa kierrättäminen, kiihtyy vanheneminen. Kuva: Pixabay

Autofagiaa voidaan kuvata kehon sisäiseksi kierrätysjärjestelmäksi. Sen avulla soluihimme kertyvä tarpeettomaksi käynyt materiaali siivotaan pois. Autofagia on tärkeä osa myös taistelussa monia vanhenemiseen liittyviä sairauksia, kuten Alzheimerin tautia vastaan, jonka yhtenä syntymekanismina voi olla huonosti toimivan materiaalin kasaantuminen soluihin.

Autofagia onkin viime vuosina tunnustettu useiden sairauksien, kuten tyypin 2 diabeteksen, Alzheimerin ja Parkinsonin tautien keskeiseksi mekanismiksi, ja autofagian toiminnan selvittämisestä myönnettiin jopa lääketieteen nobel vuonna 2016. Toiveena on, että autofagian lainalaisuuksien tunteminen mahdollistaisi useiden vanhenemiseen liittyvien sairauksien synnyn selvittämisen ja sitä kautta niiden ennaltaehkäisyn ja hoidon.

Soluilla on kaksi päätoimista kierrätysjärjestelmää

Soluillamme on autofagian lisäksi toinen päätoiminen kierrätysjärjestelmä, joka vastaa yksinomaan proteiinien eli valkuaisaineiden hajottamisesta. Tämän järjestelmän nimi on ubikitiini-proteasomi-järjestelmä. Huonosti toimivien proteiinien kierrättäminen on erityisen tärkeää sen vuoksi, että hyvin toimivat proteiinit ovat elinehto solun toimintakyvyn kannalta. Sen lisäksi, että vahingoittuneet proteiinit eivät toimi oikein, ne ovat alttiita muodostamaan soluihin kertymiä, jotka ovat myrkyllisiä soluille. Näitä solun proteiinikertymiä esiintyy monissa sairauksissa kuten Alzheimerin taudissa.

Toisin kuin ubikitiini-proteasomi-järjestelmä, autofagia on monipuolisempi kierrätysjärjestelmä, jonka avulla solut muun muassa säätelevät ravinnetasapainoaan ja hajottavat vahingoittuneita soluelimiä mukaan lukien proteiineja. Kierrätykseen joutava materiaali joutuu ensin autofagosomiksi kutsuttuun kalvolla rajattuun rakkulaan, eräänlaiseen kuplaan. Tämä kupla sitten yhdistyy solujen jätelaitosten, eli hajottavien entsyymejä sisältävien lysosomien kanssa, pilkkoen saaliiksi saamansa rakennelman pieniin osiin. Nämä hajotustuotteet voidaan edelleen kierrättää joko solun rakennusprojekteihin tai energiantuotantoon.

Solujen siivouskoneisto laiskistuu vanhetessa

Autofagia näyttäisi vähenevän vanhetessa. Tarpeettomien ja toimimattomien molekyylien kertyminen soluun voi jo itsessään edistää vanhenemista. Kuten edellä mainittiin, tehoton autofagia voi myös altistaa monille sairauksille. Mitä pidempään solujen autofagia saadaan pidettyä aktiivisena, sitä tehokkaammin myös vanhenemista ja siihen liittyviä sairauksia voitaneen hidastaa. Autofagian lääkkeellinen muokkaaminen voisi siten auttaa meitä myös elämään terveenä pidempään.

Toistaiseksi tehokkain tunnettu keino aktivoida autofagiaa on elinikää tutkitusti pidentävä, joskin pitkäaikaisista terveysvaikutuksistaan kiistelty kalorirajoitteinen ruokavalio. Näin pitkälle ei kuitenkaan ole välttämätöntä mennä, vaan omien solujensa puhtaanapitoa voi edesauttaa myös terveellisellä ravinnolla. Esimerkiksi marjat ja hedelmät aktivoivat autofagiaa. Myös liikunnan on havaittu lisäävän autofagosomien määrää lihaksissa, mikä voi osaltaan ylläpitää lihasten terveyttä.

Tulevaisuudessa olisi tärkeä tutkia miten elintavoilla voidaan vaikuttaa eri kudosten autofagiaan. Vielä ei esimerkiksi tunneta täysin, miten elintavat ja ikääntyminen yhdessä vaikuttavat aivojen hermosolujen autofagiaan. Autofagian heikentyneellä toiminnalla on nimittäin havaittu erittäin haitallisia vaikutuksia juuri aivojen toimintakykyyn. Eläintutkimusten perusteella liikunta näyttäisi tehostavan autofagiaa lihasten lisäksi myös aivoissa, mikä puolestaan voi ehkäistä vanhenemiseen liittyvää aivojen rappeutumista. Yksi liikunnan aivoja suojaava mekanismi saattaakin kulkea juuri autofagian kautta.

Tulevaisuus näyttää, missä määrin autofagiaa voidaan muokata pitkän ja terveen eliniän palvelukseen.

Lähteet:

  • Hentilä, J., Hulmi, J. J., Laakkonen, E. K., Ahtiainen, J. P., Suominen, H., & Korhonen, M. T. (2020). Sprint and strength training modulates autophagy and proteostasis in aging sprinters. Medicine and Science in Sports and Exercise, 52(9), 1948-1959.
  • Barbosa, M. C., Grosso, R. A., & Fader, C. M. (2019). Hallmarks of aging: An autophagic perspective. Frontiers in Endocrinology, 9, 790.
  • Boya, P., Reggiori, F., & Codogno, P. (2013). Emerging regulation and functions of autophagy. Nature Cell Biology, 15(7), 713-720.
  • Fan, J., Kou, X., Jia, S., Yang, X., Yang, Y., & Chen, N. (2016). Autophagy as a potential target for sarcopenia. Journal of Cellular Physiology, 231(7), 1450-1459.
  • Mehrpour, M., Esclatine, A., Beau, I., & Codogno, P. (2010). Autophagy in health and disease. 1. regulation and significance of autophagy: An overview. American Journal of Physiology.Cell Physiology, 298(4), C776-85.
  • Rubinsztein, D. C., Marino, G., & Kroemer, G. (2011). Autophagy and aging. Cell, 146(5), 682-695.
  • https://yle.fi/uutiset/3-9206454
  • Andreotti, D. Z., Silva, J. D. N., Matumoto, A. M., Orellana, A. M., de Mello, P. S., & Kawamoto, E. M. (2020). Effects of physical exercise on autophagy and apoptosis in aged brain: Human and animal studies. Frontiers in Nutrition, 7, 94.
  • He, C., Sumpter, R., & Levine, B. (2012). Exercise induces autophagy in peripheral tissues and in the brain. Autophagy, 8(10), 1548-1551.

Soluista karanneen DNA:n määrä ennustaa elinikää

Teksti on kirjoitettu yhteistyössä Laura Kanasen (FT, biogerontologi) kanssa.

Perimä on säilötty jokaiseen soluumme DNA:n muodossa. Ihmisillä DNA:ta suojaa soluissa tumakotelo. Joissain tilanteissa DNA:ta kuitenkin päätyy solun ulkopuolelle. Tämä solunulkoisen DNA:n määrä vaikuttaa olevan hyvä ennustamaan elinikää.

DNA:kin  ottaa välillä hatkat. Kuva: Pixabay

DNA:n tehtävä on säilyttää perimä mahdollisimman muuttumattomana. Ihmisillä ja muilla aitotumallisilla DNA:ta suojaa tumakotelo, joka rajaa solun ytimen muusta solusta erilleen. DNA:ta kuitenkin päätyy kehon erilaisissa toiminnoissa solun sisältä myös solunulkoiseksi DNA:ksi. Joskus DNA tosiaan karkaa solusta, mutta sen poistuminen solusta voi olla myös hallittua.

Meillä jokaisella on veressä solunulkoista DNA:ta. Vasta sen kohonnut määrä liittyy terveysongelmiin. Verenkierrossa kulkevaa solunulkoista DNA:ta voidaan hyödyntää paitsi sairauksien diagnosoinnissa myös eliniän ennustamisessa.

Miksi DNA karkaa solun sisältä?

Nykytietämyksen valossa DNA itsessään ei ole aktiivinen toimija soluissamme. DNA:n tehtävänä on olla ohjeena solun rakennusosien valmistamiselle. Arkielämässä DNA:ta voidaan verrata keittokirjaan, joka sisältää ohjeet moniin eri ruokiin, mutta tarvitsee kokin ja sopivat ainekset, jotta ruuat voidaan valmistaa.

Aitotumallisilla eliöillä DNA oleilee tuman ulkopuolella ainoastaan solun jakautuessa, jolloin tumakotelo hajoaa, ja tyypillisesti muodostuu kaksi identtistä tytärsolua. Näin ollen yksi selkeä syy DNA:n päätyä solun ulkopuolelle liittyy solun hallittuun hajoamiseen. Toisaalta solunulkoisen DNA:n määrä kasvaa selkeästi esimerkiksi hyvin vakavissa ruumiinvammoissa, joissa on tapahtunut mittavia kudosvaurioita. Solunulkoisen DNA:n määrän kasvu liittyy siis myös hallitsemattomaan kudosten ja solujen hajoamiseen.

Nykyisin uskotaan myös, että toimivat solut voivat vapauttaa DNA:ta verenkiertoon osana immuunipuolustusta. DNA voikin toimia immuunipuolustusta aktivoivana vaaran signaalina. On myös mahdollista, että kohonnut solunulkoisen DNA:n määrä on seurausta sen tehottomasta poistamisesta verenkierrosta.  

Solunulkoinen DNA ja sairaudet

Solunulkoinen DNA on lupaava, yksinkertainen merkkiaine sydän- ja verisuoniterveyden arvioimiseen. DNA:n määrä veressä kohoaa vakavissa sydäntautitiloissa merkittävästi ja ennustaa, miten tauti etenee. Kohonneen solunulkoisen DNA:n on havaittu liittyvän myös moniin sydän- ja verisuonitautiriskistä kertoviin tekijöihin, kuten korkeaan verenpaineeseen, terveydelle haitallisiin veren rasva-arvoihin ja tulehdukseen.

Myös syövänhoitoon kehitetään jatkuvasti uutta, helposti kerättäviin näytteisiin perustuvaa diagnostiikkaa. Kudosnäytteiden kerääminen on kehoon kajoavaa, eikä sitä voida toistaa yhtä usein kuin vaikkapa verinäytteenottoa. Verinäytettä, eli nestebiopsiaa onkin kehitetty kudospohjaisten analyysien tueksi. Verenkierrosta mitattavan solunulkoinen DNA sisältää DNA:ta useista eri kudoslähteistä. Syöpäpotilailla kiinnostuksen kohteena on yksinomaan syöpäsoluista peräisin oleva solunulkoinen DNA, joka voi auttaa diagnosoimaan ja tyypittämään kehossa olevan syövän sen sijainnista riippumatta.

Näiden lisäksi kohonneen solunulkoisen DNA:n määrän on havaittu muun muassa ennustavan kuolleisuutta tehohoidossa ja verenmyrkytyksen yhteydessä. Myös vanhenemisen myötä esiintyvässä hauraus-raihnaus-oireyhtymän (engl. frailty) yhteydessä solunulkoisen DNA:n määrä on kohonnut.

Solunulkoinen DNA eliniän ennustajana

Ottaen huomioon, että suurempi solunulkoisen DNA:n määrä on niin selvästi merkki sairaudesta, ei liene yllättävää, että solunulkoisen DNA:n määrä ennustaa myös kuolleisuutta normaaliväestössä. Solunulkoisen DNA:n on havaittu ennustavan elinikää niin keski-ikäisillä kuin hyvin iäkkäilläkin ihmisillä. Vaikka korkea solunulkoisen DNA:n määrä liittyy moniin sydän- ja verisuonitauteihin ja niiden riskitekijöihin, ennustaa solunulkoisen DNA:n määrä kuolleisuutta riippumatta siitä, onko ihmisellä kyseinen sairaus vai ei. Solunulkoinen DNA näyttäisikin olevan muista terveysmuuttujista riippumaton, itsenäinen eliniän ennustaja.

Solunulkoinen DNA voi olla tulevaisuudessa hyödyllinen merkkiaine kertomaan useista terveysriskeistä. Solunulkoisen DNA:n etuna on, että se pystytään mittaamaan verestä nopeasti ja edullisesti. Menetelmä vaatii kuitenkin yhä kehittämistä ja lisää laajoja tutkimuksia.

Tällä hetkellä tutkitaan tarkemmin sitä, mikä tarkalleen ottaen on normaalin ja ongelmallisen solunulkoisen DNA:n määrän raja, ja sitä, voiko solunulkoinen DNA edesauttaa tiettyjen sairauksien kehittymistä. On silti pidettävä mielessä, että yksittäinen merkkiaine harvoin riittää kokonaisvaltaiseen terveydentilan arvioimiseen. Solunulkoisen DNA:n määrä voisi kuitenkin toimia tärkeänä osana laajempaa merkkiaineiden kokoelmaa, jolla terveyttä arvioidaan.

Lähteet:

  • Kananen, L., Hurme, M., Jylha, M., Harkanen, T., Koskinen, S., Stenholm, S., et al. (2020). Circulating cell-free DNA level predicts all-cause mortality independent of other predictors in the health 2000 survey. Scientific Reports, 10(1), 13809-020.
  • https://www.duodecimlehti.fi/duo12134
  • Jylhava, J., Lehtimaki, T., Jula, A., Moilanen, L., Kesaniemi, Y. A., Nieminen, M. S., et al. (2014). Circulating cell-free DNA is associated with cardiometabolic risk factors: The health 2000 survey. Atherosclerosis, 233(1), 268-271.
  • Jylhava, J., Nevalainen, T., Marttila, S., Jylha, M., Hervonen, A., & Hurme, M. (2013). Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell, 12(3), 388-397.
  • Polina, I. A., Ilatovskaya, D. V., & DeLeon-Pennell, K. Y. (2020). Cell free DNA as a diagnostic and prognostic marker for cardiovascular diseases. Clinica Chimica Acta; International Journal of Clinical Chemistry, 503, 145-150.
  • Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cell-free nucleic acids as biomarkers in cancer patients.Nature Reviews.Cancer, 11(6), 426-437.
  • Song, H., & Cheng, X. W. (2014). Circulating cf-DNA: A promising, noninvasive tool for assessment of early cardio-metabolic risk. Atherosclerosis, 233(1), 307-309.
  • van der Vaart, M., & Pretorius, P. J. (2008). Circulating DNA. its origin and fluctuation. Annals of the New York Academy of Sciences, 1137, 18-26.

Kehon eri DNA-yhteisöt ja elinikä

On yleisesti tunnettua, että perimä vaikuttaa elinikään. Perimällä viitataan yleensä solumme tumassa olevaan DNA:han, mutta kehossamme on todellisuudessa kolme hyvin erilaista DNA-yhteisöä. Nämä eri DNA-yhteisöt toimivat vuorovaikutuksessa keskenään. Vai yhden DNA-sisältöön voit omalla toiminnallasi vaikuttaa.

Perimän eliksiirit tulevat kolmessa pullossa. Kuva: Pixabay

Perimämme on kirjattu DNA-molekyyleihin. Suurin osa solujemme DNA:sta on tuman kromosomeissa olevaa DNA:ta, josta puolet perimme isältä ja puolet äidiltä. Tämän lisäksi soluissa on mitokondriaalista DNA:ta, jonka perimme yksinomaan äidiltä. Kolmannen DNA-yhteisön muodostavat suolistossamme elävät mikrobit. Nämä kolme DNA-yhteisöä muodostavat koko kehossa olevan perimän, joka puolestaan vaikuttaa sairastumisalttiuteen ja elinikään.

Kromosomit kertovat sukusi tarinan

Identtisiä kaksosia lukuun ottamatta meistä jokaisella on ainutkertainen perimä. Perimämme on syntynyt munasolun ja siittiön yhdistyessä, jolloin vanhempiemme geenit yhdistyivät muodostaen uuden yksilön. Koska ihmisellä on 46 kromosomiparia, voi näistä syntyä lukemattomia erilaisia geneettisiä yhdistelmiä uuden ihmisen aluksi.

Saamamme perimä määrää suoraan tiettyjä ominaisuuksiamme. Esimerkiksi silmien väri määräytyy geenien perusteella ilman ympäristön vaikutusta. Sen lisäksi perimä asettaa tietyt rajat useille eri ominaisuuksille, jotka eivät ole pelkästään geeneistä riippuvaisia. Sinulla voi olla esimerkiksi perinnöllinen alttius sydän- ja verisuonitaudeille, mutta jos syöt terveellisesti, liikut riittävästi ja pysyttelet normaalipainossa, ei tämä tauti välttämättä koskaan puhkea. Eliniästä geenit määräävät arviolta noin neljänneksen.

Oman perimän tunteminen voi edesauttaa myös pitkän iän tavoittelua. Mikäli suvussa kulkee esimerkiksi elintapoihin vahvasti liittyviä sairauksia, voi niitä pyrkiä välttämään terveellisillä elintavoilla. Myös suvussa mahdollisesti kulkevat syöpäriskit on hyvä tiedostaa, jolloin voi tehostaa tarkkailua esimerkiksi iho- tai rintasyövän varalta. Tulevaisuudessa geenitietoja tullaan todennäköisesti hyödyntämään yhä enemmän erityisesti sairausriskien arvioimisessa, jolloin saamme entistä tarkempaa tietoa perimästämme.

Mitokondriaalinen perimä kulkee äidiltä lapselle

Mitokondriot ovat monin tavoin poikkeuksellisia soluelimiä. Ne ovat välttämättömiä solujen toiminnalle tuottaen suurimman osan solun tarvitsemasta energiasta. Lisäksi ne ovat soluelimistä ainoita, jotka sisältävät omaa DNA:ta. Koska mitokondriot peritään äidiltä, äidin elinikä vaikuttaa isän elinikää enemmän lapsen pitkäikäisyyteen. Vaikka mitokondrioissa on tieto osalle niiden rakennusosista, suurin osa niiden perimästä on peräisin tumasta. Näin ollen myös isän perimällä on merkitystä mitokondrioiden toiminnalle.

Mitokondrion oman perimän ajatellaan olevan seurausta sen syntytavasta – uskotaan, että elämän kehittyessä aitotumallinen solu on nielaissut sisäänsä bakteerin, joka sittemmin kehittyi solun sisällä symbioosissa eläväksi mitokondrioksi. Tässä yhteistyössä mitokondrio tuottaa solulle energiaa ja solu tarjoaa mitokondriolle sopivan elinympäristön. Useat asiat tukevat tätä teoriaa: mitokondriot ovat samankokoisia kuin bakteerit, niillä on oma perimä, ja ne kykenevät lisääntymään itsenäisesti jakautumalla. Tällainen bakteerin kumppanikseen ottanut solu on ollut toiminnaltaan ylivertainen muihin soluihin nähden, ja luonnonvalinta on suosinut niiden lisääntymistä. Nykyisin kaikissa soluissamme punasoluja lukuun ottamatta on mitokondrioita.

Mitokondrioiden syntytarina selittää myös sen, miksi niiden on havaittu olevan tuman DNA:ta alttiimpia mutaatioille. Mitokondrioiden DNA:n korjauskoneisto on nimittäin huomattavasti heikompi kuin aitotumallisen solun tumassa oleva koneisto. Heikon korjauskoneiston lisäksi mitokondriot kuormittuvat oksidatiivisesta stressistä, jota syntyy energiantuotannon yhteydessä. Eläinmalleilla on havaittu, että puutokset mitokondrioiden DNA:n korjauskoneistossa lyhentävät elinikää.

Mitokondrioiden perimä voidaan jakaa sen geneettisen materiaalin mukaan eri haplotyyppeihin. Eri haplotyyppien on havaittu olevan yhteydessä useisiin sairauksiin. Kuten blogin ensimmäisessä tekstissä on kerrottu, tietty haplotyyppi voi myös edesauttaa pitkäikäisyyttä. Erikoista kyllä, eri haplotyyppien rikastuminen ikäihmisiin vaikuttaa olevan riippuvaista ihmisryhmästä – mikä lisää elinikää Suomessa, ei välttämättä tee sitä muissa maissa. Tämä ilmiö johtunee erilaisen elinympäristön lisäksi siitä, että mitokondriaalinen DNA toimii kehossa aina yhdessä elimistön muun DNA:n kanssa.

Suolistomikrobit tuovat oman perimänsä osaksi sinua

Suolistomikrobeja ovat esimerkiksi bakteerit, hiivat ja virukset, joita on kehossamme jopa noin 1,5 kiloa. Suolistomikrobien muodostamaa kokonaisuutta, mikrobiomia, voidaan sanoa myös ihmisen kolmanneksi perimäksi – jokainen mikrobi kun kantaa sisällään omaa perimäänsä. Mikrobien suuren määrän vuoksi niiden yhteenlaskettujen geenien määrä on itse asiassa suurempi kuin ihmisen perimä.

Siinä missä vanhemmilta saatu tuman ja mitokondrioiden perimä on ennalta määrätty, voi suolistomikrobien perimään osaltaan itse vaikuttaa. Uusimmat tutkimukset antavat nimittäin viitteitä siitä, että ruokavalio ja liikunta muokkaavat suolistomikrobiston koostumusta ja siten myös sen perimää. Ruokavalion osalta erityisesti ravintokuidun määrä vaikuttaa suolen mikrobisisältöön. Uusia mikrobistoa muokkaavia ravintoaineita tutkitaan kiivaasti ja tulokset vaikuttavat lupaavilta.

Kehon DNA-yhteisöt yhdessä vaikuttavat elinikään

Kehon eri DNA yhteisöt keskustelevat keskenään monin eri keinoin. Mitokondriot tarvitsevat toimiakseen paljon tuman geenien koodaamia rakennusaineita ja ne myös keskustelevat tuman kanssa proteiinien ja RNA:n avulla. Viestit eivät kuitenkaan kulje ainoastaan tumasta mitokondrioihin vaan myös päinvastoin. Solun tasapainon kannalta nämä viestit ovat olennaisia, ja muutokset viestinnässä voivat johtaa häiriöihin solun toiminnassa, vaikuttaen mahdollisesti myös solun ikääntymiseen.

Samoin viestintä mikrobiomin ja perimän välillä on olennaista kehon toiminnan kannalta. Arvellaan, että mikrobiomi voi myös osaltaan auttaa kehoa sopeutumaan vallitsevaan ympäristöön. Toistaiseksi tiedetään, että immuunijärjestelmä voi kuljettaa viestejä mikrobien ja kudosten välillä, mutta kaikkia kommunikointireittejä ei vielä tunneta. Yksi suuri tiedeuutinen viimevuosina on ollut suolistomikrobien löytyminen aivoista, joka avasi kokonaan uuden näkökulman bakteerien ja kudosten vuorovaikutukselle.

Toistaiseksi tutkimukset ovat tyypillisesti keskittyneet yhteen kehon DNA-yhteisöön kerrallaan, jolloin kehon toiminnasta tai ikääntymisestä on haastava muodostaa kokonaiskuvaa. Tiedetään kuitenkin, että kehon kaikki DNA-yhteisöt muuttuvat vanhenemisen seurauksena. Erityisesti mutaatioille altis mitokondriaalinen DNA ja ympäristöön reagoiva suolistomikrobisto muuttuvat vanhetessa, mutta myös tuman perimään kertyy sattumanvaraisia mutaatioita, jotka muuttavat perimää ja mahdollisesti myös sen toimintaa.

Tulevaisuudessa toivottavasti ymmärrämme näiden kolmen DNA-yhteisön vuorovaikutusta ja toimintaa entistä paremmin.

Lähteet:

  • Garagnani, P., Pirazzini, C., Giuliani, C., Candela, M., Brigidi, P., Sevini, F., et al. (2014). The three genetics (nuclear DNA, mitochondrial DNA, and gut microbiome) of longevity in humans considered as metaorganisms. BioMed Research International, 2014, 560340.
  • Bar-Yaacov, D., Blumberg, A., & Mishmar, D. (2012). Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochimica Et Biophysica Acta, 1819(9-10), 1107-1111.
  • Forsythe, P., Kunze, W. A., & Bienenstock, J. (2012). On communication between gut microbes and the brain. Current Opinion in Gastroenterology, 28(6), 557-562.
  • Bar-Yaacov, D., Blumberg, A., & Mishmar, D. (2012). Mitochondrial-nuclear co-evolution and its effects on OXPHOS activity and regulation. Biochimica Et Biophysica Acta, 1819(9-10), 1107-1111.
  • Franceschi, C., Valensin, S., Bonafe, M., Paolisso, G., Yashin, A. I., Monti, D., et al. (2000). The network and the remodeling theories of aging: Historical background and new perspectives. Experimental Gerontology, 35(6-7), 879-896.
  • Morgan, X. C., Segata, N., & Huttenhower, C. (2013). Biodiversity and functional genomics in the human microbiome. Trends in Genetics : TIG, 29(1), 51-58.
  • Munukka, E., Ahtiainen, J. P., Puigbo, P., Jalkanen, S., Pahkala, K., Keskitalo, A., et al. (2018). Six-week endurance exercise alters gut metagenome that is not reflected in systemic metabolism in over-weight women. Frontiers in Microbiology, 9, 2323.
  • Nagpal, R., Mainali, R., Ahmadi, S., Wang, S., Singh, R., Kavanagh, K., et al. (2018). Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging, 4(4), 267-285.
  • Santoro, A., Salvioli, S., Raule, N., Capri, M., Sevini, F., Valensin, S., et al. (2006). Mitochondrial DNA involvement in human longevity. Biochimica Et Biophysica Acta, 1757(9-10), 1388-1399.

Geenien kopioluku ja elinikä – katseet rDNA:han

Teksti on kirjoitettu yhteistyössä Toni Jernforsin (FM, ekotoksikologi) kanssa.

Perimän vaikutus elinikään on tunnettu jo vuosikymmeniä, jollei satoja. Vähemmän tutkittu aihealue ovat sellaiset perimässä näkyvät muutokset, jotka eivät liity tiettyjen geenien olemassaoloon tai muotoon, vaan suoraan niiden määrään. Perimässämme voi tapahtua tiettyjen DNA-alueiden monistumista, ja tällä voi olla suuri merkitys terveyteen ja elinikään.

Tuoko suurempi määrä DNA:kopioita enemmän elinaikaa?

Perimässämme olevat geenit ovat pätkä DNA-juostetta, jossa on ohje tietyn tuotteen (RNA tai proteiini) valmistukselle. Samoin ribosomaalinen DNA (rDNA) on pätkä DNA-juostetta, jossa on ohje ribosomaalisen RNA:n (rRNA) valmistamiselle. Ribosomaalinen RNA puolestaan on ribosomin päärakennusosa. Lopputuotteena tästä syntyy ribosomi, joka valmistaa sinunkin soluissasi sen tarvitsemat proteiinit. Voit ajatella tätä kokonaisuutta vaikkapa Ikean huonekaluna: DNA on katalogi, jossa on ohjeet kaikkien Ikean huonekalujen kasaamiseen. rDNA on ne sivut, joissa on ohje juuri sille tuolille, jonka tarvitset . Tämän ohjeen perusteella osaat kerätä ne osat, joita kyseiseen tuoliin tarvitset. Ribosomi sitten on se valmis tuoli (jonka kasaamisen jälkeen ei jäänyt jäljelle yhtään ylimääräistä ruuvia, wau!).

Toisilla perimän kopiokone on monistanut tiettyjä alueita ahkerasti, toisilla ei

Soluissa on valtava määrä ribosomeja. Ne toimivat tehtaina, jotka valmistavat proteiineja solun tarpeisiin. rRNA muodostaa jopa 80% solussa olevasta RNAsta. Jotta solut kykenevät ylläpitämään ribosomien valtavaa määrää, on niillä oltava satoja rDNA-kopioita. Tämä mahdollistaa sen, että useita ribosomeja voidaan valmistaa solussa samanaikaisesti. Ajatellaan asiaa taas Ikean kautta – kun käytössä on yhden ohjelehtisen sijaan satoja identtisiä ohjeita, rutkasti rakennusosia ja joukkio innokkaita kasaajia, saadaan samalla kertaa aikaan satoja identtisiä tuoleja.

Ihmisillä on perimässään eri määrä rDNA-alueen kopioita. Tämä kopioiden määrä vaikuttaa suoraan siihen, kuinka nopeasti solumme voivat tuottaa proteiineja. Näin ollen rDNA:n kopioiden lukumäärä vaikuttaa myös solun ja koko kehon kykyyn sopeutua elinympäristöön.

Eliöillä rDNA:n kopioluvun on havaittu määrittävän monia yksilön ominaisuuksia. Vähäinen kopioluku on yhteydessä muuan muassa puutteelliseen kehittymiseen ja selviytymiseen, kun taas korkea kopioluku johtaa nopeaan kasvuun ja kehittymiseen. Onko siis niin, että korkean kopioluvun omaavat ihmiset ovat myös ylivertaisia pienen kopioluvun omaaviin nähden? Valitettavasti asia ei ole aivan näin yksinkertainen.

rDNA ihmisillä – liika on liikaa?

Ihmisellä rDNA kopioluvun merkitystä ei vielä tarkkaan tunneta. Toistaiseksi kuitenkin tiedetään, että ihmisellä on keskimäärin 400 rDNA-kopiota. Tämä on kuitenkin vain keskiarvo, ja kopioluku vaihtelee suuresti yksilöiden välillä. Tiedetään, että perimä määrittää suurelta osin rDNA kopioluvun, mutta muutoksia tapahtuu myös yksilötasolla.

Vauvoilla korkea rDNA kopioluku on yhteydessä nopeampaan kasvuun ensimmäisinä elinkuukausina ja kehitykseen ensimmäisen elinvuoden aikana. Toisaalta korkean kopioluvun on havaittu olevan yhteydessä Downin syndroomaan, Alzheimerin tautiin ja skitsofreniaan.

rDNA, terveys ja elinikä

Tutkimukset rDNA:n kopioluvun ja vanhenemisen välillä ovat olleet ristiriitaisia. Osassa tutkimuksista on havaittu rDNA kopioluvun vähenevän vanhenemisen myötä ja osassa tutkimuksista tällaista eroa ei ole löydetty. Tutkimukset kuitenkin antavat osviittaa siitä, että hyvin pieni tai hyvin suuri rDNA kopioluku voi olla yksilölle haitallinen ja yhteydessä monitekijäisiin sairauksiin.

rDNA:lle tyypillistä on epävakaus. Muutokset rDNA:ssa voivat johtaa sekä ribosomien vähäisempään määrään, että heikompaan laatuun. Nämä muutokset voivat suoraan heikentää solun toimintaa kiihdyttäen vanhenemista. Toisaalta ribosomien heikentynyt toiminta on yhdistetty pidempään elinikään, ainakin hiivoilla. Tällöin solun aineenvaihdunnan aktiivisuus laskee samoin kuin elinikää tutkitusti pidentävä kalorirajoitteisessa ruokavaliossa. On myös arveltu, että rDNA voi toimia telomeerien tavoin ohjaten solun jakautumiskykyä, vaikuttaen sitä kautta solujen vanhenemiseen.

Tutkimus rDNA:n merkityksestä eliniälle on vielä alkutaipaleella. Selvää on, että rDNA on välttämätön jokaisen solun toiminnalle ja että ribosomien tuotannon lisäksi se vaikuttaa solun vanhenemiseen. Tiedetään myös, että ympäristö voi yksilönkehityksen alkuvaiheilla vaikuttaa rDNA:n kopiolukuun. Vielä ei kuitenkaan ole selvää, missä määrin aikuisella ympäristötekijät ja omat elintapavalinnat vaikuttavat rDNA:n kopiolukuun.

Lähteet:

  • Lavrinienko, A., Jernfors, T., Koskimaki, J. J., Pirttila, A. M., & Watts, P. C. (2020). Does intraspecific variation in rDNA copy number affect analysis of microbial communities? Trends in Microbiology,
  • Agrawal, S., & Ganley, A. R. (2016). Complete sequence construction of the highly repetitive ribosomal RNA gene repeats in eukaryotes using whole genome sequence data. Methods in Molecular Biology (Clifton, N.J.), 1455, 161-181.
  • Bross, K., & Krone, W. (1972). On the number of ribosomal RNA genes in man. Humangenetik, 14(2), 137-141.
  • Kobayashi, T. (2011). How does genome instability affect lifespan?: Roles of rDNA and telomeres. Genes to Cells : Devoted to Molecular & Cellular Mechanisms, 16(6), 617-624.
  • Larson, D. E., Zahradka, P., & Sells, B. H. (1991). Control points in eucaryotic ribosome biogenesis. Biochemistry and Cell Biology = Biochimie Et Biologie Cellulaire, 69(1), 5-22.
  • Porokhovnik, L. N., & Lyapunova, N. A. (2019). Dosage effects of human ribosomal genes (rDNA) in health and disease. Chromosome Research : An International Journal on the Molecular, Supramolecular and Evolutionary Aspects of Chromosome Biology, 27(1-2), 5-17.
  • Ritossa, F. M. (1968). Unstable redundancy of genes for ribosomal RNA. Proceedings of the National Academy of Sciences of the United States of America, 60(2), 509-516.
  • Sinclair, D. A., & Guarente, L. (1997). Extrachromosomal rDNA circles–a cause of aging in yeast. Cell, 91(7), 1033-1042.

Muistisairaudet ja elinikä – pääroolissa proteiinikertymät

Proteiinit eli valkuaisaineet ovat solulle elintärkeitä rakennuspalikoita. Proteiinit toimivat paitsi rakennusosina, myös lukemattomissa muissa tehtävissä hoitaen muuan muassa solujen viestintää. Proteiinien oikeanlainen rakenne ja sijoittuminen solussa onkin kudosten toiminnan avainroolissa. Proteiinien toiminnan häiriintyminen on yksi syy ikääntymiseen liittyvien muistisairauksien kehittymiselle.

Rakennuspalikat on syytä pitää järjestyksessä. Kuva: Pixabay.

Proteiinien toiminnan häiriöt ovat useiden vakavien sairauksien taustalla. Jo yksittäisen proteiinin puutteellinen toiminta voi olla kohtalokas selviytymisen kannalta. Havaintojen pohjalta syntyi teoria ikääntymismekanismista, joka pohjautuu juuri proteiinien toimintaan, tai tarkemmin niiden kiinnittymiseen toisiinsa muodostaen proteiinikertymiä.  

Proteiinien oikeanlainen toiminta on kehon elinehto

Proteiinit ovat soluille välttämättömiä rakennusaineita. Tämän lisäksi proteiinit ovat osallisina lähes kaikissa solun toiminnoissa mahdollistaen kommunikoinnin toimimalla solujen viestien välittäjinä ja vastaanottajina. Suurin osa elimistön entsyymeistä on proteiineja, ja ilman entsyymejä kehossa tapahtuvat aineenvaihdunnan reaktiot olisivat normaalissa kehonlämmössä niin hitaita, ettei elämä olisi mahdollista. Proteiineilla on tärkeä rooli myös kehon immuunipuolustuksessa.

Proteiinit rakentuvat aminohapoista, joita ihmiskehossa on kaksikymmentä erilaista. Aminohappoketjut muodostavat kolmiulotteisia rakenteita. Ennen kuin proteiini on toiminnallisessa, oikeassa kolmiulotteisessa muodossaan, sen tulee ensin laskostua oikein. Väärin laskostuneet proteiinit eivät toimi, ja terveet solut poistavat tällaiset toimimattomat proteiinit. Ikääntyessä proteiinien laskostuminen ja väärin laskostuneiden hallittu poisto kuitenkin häiriintyvät.

Proteiinikertymät ovat tyypillisiä muistisairauksille

Ikääntyessä proteiinikertymien määrä kasvaa. Proteiinikertymät muodostuvat tyypillisesti useamman, huonosti laskostuneen proteiinin yhteenliittymistä. Tällaisten proteiinikertymien on arveltu vaurioittavan soluja ja kudoksia edistäen näin vanhenemista.

Myös solujen kohtaama oksidatiivinen stressi saa aikaan proteiinien kertymistä. Jotta noidankehä on valmis, proteiinien kertyminen heikentää solun kykyä poistaa väärin laskostuneita proteiineja, jolloin niiden kertyminen entisestään kiihtyy.

Proteiinikertymien määrän kasvu on yksi Alzheimerin taudin tyypillisimpiä molekyylitason muutoksia. Aivojen hermosoluihin kertyy sekä solunulkoisia että -sisäisiä proteiinikertymiä, jotka johtavat hermosolujen kuolemaan ja sitä kautta kognitiivisten toimintojen (muisti, oppiminen) heikkenemiseen.

Muistisairaudet ja elinikä

Muutokset proteiinien toiminnassa vaikuttavat koko kehon toimintaan. Ikääntyessä moni toimivan proteiinin muodostumisen vaihe heikkenee: DNA:han on voinut kertyä mutaatioita, jotka muuttavat proteiinissa olevia aminohappoja. Proteiini voi laskostua väärin, ja proteiineja korjaavan koneiston toiminta heikkenee ja huonoja proteiineja ei enää poisteta yhtä tehokkaasti. Kaikki tämä edesauttaa virheellisesti laskostuneiden proteiinien liittymistä yhteen, hankaloittaen solujen toimintaa.

Proteiinikertymät voidaan nähdä vanhenemisen syynä ja seurauksena. Toimimattomat proteiinimöykyt voivat osaltaan estää soluja toimimasta normaalisti, kuten Alzheimerin taudin osalta uskotaan olevan. Toisaalta proteiinikertymät voidaan myös nähdä seurauksena siitä, että solujen oksidatiivisen stressin määrä kasvaa ikääntyessä.

Dementia ja Alzheimerin tauti olivat suomalaisten kolmanneksi yleisin kuolinsyy vuonna 2018. Muistisairauksista johtuvien kuolemien määrä on kasvanut viime vuosikymmenenä nopeasti osin väestön ikääntymisen seurauksena. Proteiinikertymien ennaltaehkäisy voisikin olla yksi avain terveempään vanhenemiseen. Nykyisin etsitäänkin hoitomuotoja, joilla yhteen liittyneiden proteiinien kertymistä voidaan ennaltaehkäistä tai vähentää.

Lähteet:

  • Bjorksten, J. (1968). The crosslinkage theory of aging. Journal of the American Geriatrics Society 16, 408-427.
  • Bjorksten, J. & H. Tenhu. (1990). The crosslinking theory of aging–added evidence. Experimental Gerontology 25, 91-95.
  • Moreno-Gonzalez, I. & C. Soto. (2011). Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Seminars in Cell & Developmental Biology 22, 482-487.
  • Musi, N., J.M. Valentine, K.R. Sickora, E. Baeuerle, C.S. Thompson, Q. Shen & M.E. Orr. (2018). Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 17, e12840.
  • Jones, R. (2010). Protein aggregation increases with age. PLoS Biology 8, e1000449.
  • Wang, D.S., D.W. Dickson & J.S. Malter. (2008). Tissue transglutaminase, protein cross-linking and Alzheimer’s disease: review and views. International Journal of Clinical and Experimental Pathology 1, 5-18.
  • Reeg, S. & T. Grune. (2015). Protein Oxidation in Aging: Does It Play a Role in Aging Progression? Antioxidants & Redox Signaling 23, 239-255.
  • Suomen virallinen tilasto (SVT): Kuolemansyyt [verkkojulkaisu]. ISSN=1799-5051. 2018. Helsinki: Tilastokeskus [viitattu: 30.6.2020].

Johtaako vanhenemisen hidastaminen aina ongelmiin?

Vanhenemisen hidastaminen on yksi biogerontologian kiehtovimmista tutkimusaiheista. Vaikka lupaavia keinoja toisinaan löydetään, harvoin pysähdytään miettimään sitä, mihin vanhenemisen hidastaminen tai estäminen oikeastaan perustuu. Johtaako vanhenemisen hidastaminen väistämättä ongelmiin?

Ikääntymisen hidastamisen tarjoiluehdotus. Kuva: Pixabay.

Vastauksia pitkän iän salaisuudeksi on varmasti yhtä monta kuin on vastaajaakin. Oikea ruokavalio ja riittävä liikunta tuntuvat pitävän pintansa, samoin omien vanhempien valitseminen viisaasti.  Kun puolestaan puhutaan vanhenemisen hidastamisesta tai estämisestä, riippuu vastaus todennäköisesti vastaajan näkemyksestä. Näkemyksestä riippuen vanhenemiseen ei joko voida puuttua lainkaan, sitä voidaan hidastaa tai se voidaan jopa kokonaan estää. Mihin koulukuntaan itse kuulut? 

Vanhenemisen estäminen johtaa vakaviin sivuvaikutuksiin

Yksi evolutiivisista ikääntymisteorioista esittää, että vanheneminen kulkee perimässä, ja on luonnonvalinnan ulottumattomissa. Tällä viitataan siihen, että evoluutio ei suosi pitkään eläviä yksilöitä, sillä eläimet ehtivät menehtyä luonnon muihin haasteisiin ennen varttunutta ikää.

Näin ollen perimässä rikastuvat nimenomaan nuorelle yksilölle olennaiset geenit, ja samalla on rikastunut geenejä/mutaatioita, jotka johtavat kuolemaan vanhemmalla iällä.

Jos vanhanemisen ajatellaan olevan seurausta perimästä, joka suosii nuoressa iässä hyödyllisiä geenejä, ei vanhenemiseen kannata puuttua. Vanhenemisen kajoaminen tarkoittaisi nimittäin myös kajoamista niihin geeneihin, jotka ovat nuorelle yksilölle välttämättömiä. Tästä saattaisi seurata jopa kuolemaan johtavia sivuvaikutuksia nuorella iällä. Näin ollen vanhenemisen estäminen nähdään mahdottomana, ja vanhenemisen tutkimus täyttää vain tutkijoiden tiedonnälkää.

Vanhenemista voidaan hidastaa kääntämällä kelloa taaksepäin

Ohjelmoidun ikääntymisen teoriat perustuvat ajatukseen, että vanheneminen on väistämätön prosessi, joka on ohjelmoitu meihin. Tämän teorian alle voidaan katsoa kuuluvaksi esimerkiksi telomeerien pituuteen keskittyvä ikääntymisteoria. Telomeerit suojaavat kromosomien päitä ja niiden kulumisen ajatellaan johtavan solujen kuolemaan ja sitä kautta kehon vanhenemiseen.

Ohjelmoituun ikääntymiseen luottavat tutkijat uskovat siihen, että jos vanheneminen kerran on ohjelmoitu prosessi, voidaan kelloja myös kääntää siten, että vanhenemista saadaan ainakin hidastettua. Siksipä katseet ovat kääntyneet biologisen iän mittareihin, epigeneettisiin kelloihin, jotka ovat osoittautuneet varsin tarkoiksi vanhenemisen mittareiksi. Toistaiseksi biologista ikää on saatu nuorennettua muutamalla vuodella aavistuksen kyseenalaisella usean lääkkeen yhdistelmällä, joten yhä etsitään luotettavia ja turvallisia tapoja kääntää kelloa taaksepäin.

Vanhenemisen mekanismeihin voidaan puuttua ja jopa estää vanheneminen

Virheiden karttumisteorioiden kannattajat ovat sikäli onnellisessa asemassa, että heidän mielestään vanhenemiseen voidaan todellakin puuttua. He uskovat, että vanheneminen on seurausta kehossa tapahtuvista virheistä, jolloin nuo virheet korjaamalla saadaan parhaassa tapauksessa ikuinen ja toimiva keho.

Yksittäisten ikääntymismekanismien muokkaamisesta on viljalti tutkimuksia ja lähestymistapoja on monia. Tutkimuksissa on muun muassa tehostettu puolustusmekanismien toimintaa happiradikaaleja vastaan tai vaikkapa poistettu ikääntyneitä (senesenssejä) soluja jättäen tilalle vain tuliterät, hyvässä iskussa olevat solut. Positiivinen tulos eliniän kannalta voidaan saada aikaan monin keinoin.

Lupaavimman elinikää pidentävät yhdisteet kuitenkin vaikuttavat useaan eri ikääntymisen mekanismiin yhtäaikaisesti, esimerkkinä nuoruudenlähteeksi tituleerattu resveratroli. Resveratroli on muun muassa marjoissa esiintyvä fenoliyhdiste, jonka on todettu hidastavan ikääntymistä useilla eliöillä. Ikääntymisen lisäksi resveratroli vaikuttaisi estävän myös lihomista ja syövän kehittymistä, tarjoten näin suojaa usealta eri elinikää lyhentävältä ilmiöltä. Haasteena kuitenkin on juuri resveratrolin moniulotteisuus, jolloin sen kokonaisvaltaisia vaikutuksia elimistössä on hankala arvioida.

Oma ikääntymisteoriani – onko sitä?

Biogerentologin on ennemmin tai myöhemmin pohdittava omaa näkemystään vanhenemisteorioihin liittyen. Teorioiden tuntemus auttaa paitsi muodostamaan oman näkemyksen tutkimuksensa taustaksi, myös ymmärtämään ja kunnioittamaan muiden näkemyksiä.

Oma näkemykseni varmasti kypsyy vielä. Tällä hetkellä siinä on piirteitä kaikista kolmesta teoriapohjasta. Geeniperimä on tutkimusten perusteella vahva eliniän määrittäjä, ja tarkoituksenmukainen geeninsäätely on olennaista niin kasvun, kehityksen kuin vanhenemisenkin kannalta. On totta, että tiettyjen geenien toiminnan estäminen vääräaikaisesti varmasti johtaa ongelmiin. Nykyisin kuitenkin geeninsäätelyn tutkimus on edennyt harppauksittain, ja pystymme säätämään geenejä kohdennetusti ja tiettyyn aikaan. Siksi en näe tilannetta niin mustavalkoisena, kuin evolutiivinen teoria antaa ymmärtää.

Myös vanhenemisen hidastaminen, mikäli sitä mitataan eliniän pituutena, vaikuttaisi onnistuvan esimerkiksi kalorirajoitteisella ruokavaliolla. Tiettyjä ikääntymisen mekanismeja on myös onnistuneesti hiljennetty. Mikään yksittäinen teoria ei kuitenkaan ole minulle ylitse muiden. Vanheneminen on niin monimutkainen ja monella tasolla esiintyvä ilmiö, että se vaatii useita teorioita kuvaamaan erilaisia tapahtumaketjuja. Tämä on biogerontologiassa sekä uhka että mahdollisuus – saatat tehdä oletuksia toisen teorian pohjalta, ja päätyä tuloksissasi tukemaan aivan toista. Kaikille teorioille on siis annettava mahdollisuus!

Johtaako vanhenemisen hidastaminen siis aina ongelmiin? Toistaiseksi ymmärrys ja kyky muokata kehon toimintoja on vielä siinä pisteessä, että terveeseen kehoon kajoaminen on enemmän riski kuin mahdollisuus. Sen sijaan oman terveyden huolto ja ylläpito terveellisellä ravinnolla ja riittävällä liikunnalla on kaikille saatavilla olevaa, luonnonmukaista vanhenemisen hidastamista.

Lähteet:

  • Williams GC (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution 11: 398-411.
  • Rose, M. & B. Charlesworth. (1980). A test of evolutionary theories of senescence. Nature 287, 141-142.
  • Jin K: Modern Biological Theories of Aging. Aging Dis 2010, 1(2):72-74.
  • Varela E & Blasco MA (2009). Nobel Prize in Physiology or Medicine: telomeres and telomerase Oncogene. 2010 Mar 18;29(11):1561-5.
  • Horvath S: DNA methylation age of human tissues and cell types. Genome Biol 2013, 14(10):R115-2013-14-10-r115.
  • Fahy, G.M., R.T. Brooke, J.P. Watson, Z. Good, S.S. Vasanawala, H. Maecker, M.D. Leipold, et al. (2019). Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18, e13028.
  • Fairfield KM, Fletcher RH: Vitamins for chronic disease prevention in adults: scientific review. JAMA 2002, 287(23):3116-3126.
  • van Deursen, J.M. (2019). Senolytic therapies for healthy longevity. Science (New York, N.Y.) 364, 636-637.

Vanhenemisen perimmäinen syy – miksi ihmiset kuolevat, mutta hydrat eivät?

Miksi vanheneminen tapahtuu, on ikääntymisteorioiden keskeisimpiä kysymyksiä. Nykyisin tunnetaan jo paljon vanhenemisen prosesseja, mutta missä lymyilee vanhenemisen perimmäinen syy? Vanhenemisen miksi-kysymystä selvitetään evolutiivisten vanhenemisteorioiden kautta. Perimmäinen miksi-kysymys johtaa sen äärelle, onko meidän lajimme edun kannalta kuoltava.

Miksi me vanhenemme ja lopulta kuolemme, on yksi elämän perimmäisistä kysymyksistä. Kuva: Pixabay.

Vanhenemiseen liittyvät suuret kysymykset voidaan jakaa karkeasti kahteen luokkaan: MIKSI me vanhenemme ja MITEN me vanhenemme. Vaikka IkäKRIISI-blogin aiemmat aiheet liikkuvat kielen puolesta miksi-linjalla, luokitellaan ne ikääntymisteorioiden valossa miten-kysymyksen alle. Miksi-kysymys johtaa meidät evolutiivisten ikääntymisteorioiden äärelle.

Miksi -kysymykseen vastataan evoluution kautta

Kuten sana evolutiivinen antaa ymmärtää, viitataan näillä teorioilla sukupolvien myötä tapahtuviin, periytyviin muutoksiin. Oppi-isänä teorioiden taustalla on luonnontieteiden suurmies Darwin. Evolutiivisia ikääntymisteorioita nimitetäänkin myös geneettisiksi ikääntymisteorioiksi. Näiden teorioiden nojalla vanhenemisen ajatellaan ohjautuvan geeneissä kulkevien ominaisuuksien kautta. Tätä ilmiötä puolestaan ajaa luonnonvalinta, jossa elinympäristön kannalta hyödylliset perinnölliset ominaisuudet yleistyvät ja haitalliset harvinaistuvat.

Ajaako perimä vanhenemista?

Yksi varhaisista evolutiivisia ikääntymisen teorioita perusteli ikääntymistä sillä, että meidät on ohjelmoitu vanhenemaan ja kuolemaan. Näin varmistetaan, että ihmisen määrä ei kasva rajattomasti, ja toisaalta myös se, että tulevat sukupolvet pystyvät paremmin mukautumaan muuttuvaan ympäristöön. Tämän teorian nojalla vanhat sukupolvet siis tekevät tilaa uusille, ympäristöön paremmin soveltuville yksilöille.

Vai onko vanheneminen luonnonvalinnan ulottumattomissa?

Edellistä teoriaa on kuitenkin kritisoitu siitä, että luonnonvalinta ei luonnossa elävien eläinten kohdalla ulotu koskemaan vanhenemista, koska eläimet ehtivät menehtyä sairauksiin, petojen kynsiin tai luonnon muihin haasteisiin ennen kuin vanheneminen kunnolla pääsee alkuun. Vaikka eläin pääsisi elämään vanhaksikin, ei vanhenemista kiihdyttävistä geeneistä olisi sille etua.

Toisen teorian mukaan ajatellaankin, että yksilön kannalta olennaisinta on kasvaa sukukypsäksi ja jatkaa sukua mahdollisimman tehokkaasti. Tämän jälkeen yksilö on täyttänyt tehtävänsä oman geenistönsä jatkumisen kannalta, ja on yhdentekevää, mitä yksilölle tämän jälkeen tapahtuu. Näin ollen perimässä on rikastunut suvun jatkumiselle (ja nuorelle yksilölle) olennaiset geenit, mutta toisaalta samalla on voinut myös rikastua geenejä/mutaatioita, jotka johtavat kuolemaan vanhemmalla iällä. Tämän nojalla luonnon valinnalla ei ole ollut keinoja ehkäistä esimerkiksi vanhenemiseen liittyvien sairauksien, kuten sydän- ja verisuonitautien ja syöpien, esiintymistä.

Ikääntymisen estäminen vaatii energiaa

Kolmas teoria puolestaan perustuu aineenvaihdunnasta saatavan energian optimaaliseen jakamiseen kehon ylläpidon ja lisääntymisen välillä. Solujen/kehon ylläpito on järkevää vain niin kauan kuin yksilöllä on mahdollisuus lisääntyä ja selvitä elinympäristössään. Kaikki elimistön keinot estää ikääntymiseen liittyviä ilmiöitä (kuten DNA:n korjausmekanismit) vaativat energiaa, joten on mietittävä tarkkaan, mihin kaikkeen energiaa käytetään. Valoa ei voi niin sanotusti pitää päällä joka ikkunassa, vaan vain siinä huoneessa, missä kulloinkin ollaan.

On siis kaksi tapaa nähdä asia geenien valossa – joko geenit aktiivisesti ajavat vanhenemista, tai sitten vanhenemiseen johtavat geenit rikastuvat tahattomasti. Kolmas näkökulma puolestaan perustuu rajalliseen energianmäärään, jolloin on tarkoin valittava, mihin sähkönsä käyttää.

Hydra on kuolematon yksinkertaisuutensa vuoksi

Helsingin Sanomat julkaisi 4/2020 jutun toistaiseksi ainoasta kuolemattomaksi tiedetystä eliöstä, hydrasta. Hydra on noin sentin mittainen makeissa vesissä elävä polyyppieläin, joka ei tutkimusten mukaan vanhene, saati kuole. Hydrojen vahvuus piilee siinä, että ne ovat riittävän yksinkertaisia – hydran solut eivät ole erilaistuneet eri kudoksiksi, mistä johtuen se kykenee uudistamaan solukkoaan. Lisäksi hydrat kykenevät lisääntymään sekä suvullisesti että suvuttomasti, eli joko pitämään perimänsä tismalleen saman, tai muuttamaan sitä ympäristön muuttuessa.

Hydrankaan tapauksessa kuolemattomuus ei tarkoita sitä, etteikö hydra voisi koskaan kuolla. Hydra elää ikuista elämää vain sille ihanteellisissa olosuhteissa, joissa sitä eivät uhkaa ympäristön vaarat. Kiinnostavaa kyllä, ihanteellisissakin oloissa hydra voi syödä itsensä hengiltä, jos sille antaa rajattomasti ravintoa. Yllättävän inhimillinen sentin mittainen olento siis kyseessä.

Kuolema on hinta monimutkaisuudesta

Kehon kehittyminen monimutkaiseksi asettaa siten myös omat haasteensa sen ylläpidolle, ja linkittyy siten evolutiivisiin ikääntymisteorioihin. Nämä teoriat antavat toisiaan täydentäviä, ja osin vastakkaisiakin, selityksiä vanhenemisen syille. Samalla niiden tulisi vastata myös kysymykseen siitä, miksi kullakin lajilla on sille tyypillinen elinikä? Tätä selitetään elinympäristön määrittämän kuolleisuuden kautta. Jos odotettavissa oleva elinikä lajille tyypillisessä elinympäristössä on lyhyt, luonnonvalinta suosii nopeasti lisääntyviä ja toisaalta nopeasti vanhenevia yksilöitä. Sama käy myös toisin päin, eli jos odotettavissa on, että yksilö selviää pitkälle aikuisuuteen, suosii luonnonvalinta niitä geenejä, jotka edesauttavat tervettä vanhenemista ja kehon ja solujen tehokasta ylläpitoa.

Vaikka nykyisin ihmisillä odotettavissa oleva elinikä pitenee, ovat luonnonvalinnan keinot terveen vanhenemisen tai pidemmän eliniän suhteen rajalliset. Nykyisin lääketieteen korkea taso auttaa myös huonommilla perimän pelikorteilla varustetut ihmiset saavuttamaan pitkän iän, mikä osaltaan estää luonnonvalintaa tapahtumasta. Lisäksi kehomme monimutkaisuus, jossa solut ovat erilaistuneita toiminnallisiski kudoksiksi, tekee mahdottomaksi korvata toimimatonta elintä (ainakaan omin avuin).
Maksamme siis hintaa elimistömme monimutkaisuudesta, ja se hinta on vanheneminen. Toisaalta, olisitko tämän luettuasikaan mieluummin hydra?

Lähteet:

  • Kirkwood, T.B. & S.N. Austad. (2000). Why do we age? Nature 408, 233-238.
  • Kirkwood, T.B. (1977). Evolution of ageing. Nature 270, 301-304.
  • Rose, M. & B. Charlesworth. (1980). A test of evolutionary theories of senescence. Nature 287, 141-142.
  • Goldsmith, T.C. (2015). Is the evolutionary programmed/ non-programmed aging argument moot? Current Aging Science 8, 41-45.
  • Williams GC (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution 11: 398-411.
  • Medawar, P. B (1952). An Unsolved Problem of Biology (Lewis, London).
  • Weismann A. (1889). Essays upon heredity and kindred biological problems. Oxford: Clarendon Press.
  • Bell, G. Evolutionary and nonevolutionary theories of senescence. Am. Nat. 124, 600–603 (1984).
  • Martinez, D.E. (1998). Mortality patterns suggest lack of senescence in hydra. Experimental
  • Gerontology 33, 217-225.
  • https://dynamic.hs.fi/a/2020/hydra/
  • https://www.demographic-research.org/volumes/vol4/1/4-1.pdf

Syöpä selätetään yhä useammin, mutta se voi hävittyäänkin kiihdyttää vanhenemista

Teksti on kirjoitettu yhteistyössä Tuuli Nissisen (LitM, kakeksiatutkija) kanssa.

Viimeaikaisen uutisoinnin perusteella voisi luulla, että syöpähoidoissa tapahtuu ratkaisevia läpimurtoja lähes joka viikko. Todellisuudessa lupaavatkin löydökset ovat vielä pitkään potilaiden ulottumattomissa. Sinnikäs parannuskeinojen selvittäminen on kuitenkin ennen kaikkea pitkäjänteistä työtä. Syöpähoitojen kehittyminen yksilöllisemmiksi ja tehokkaammiksi auttaisi meitä kiistatta saavuttamaan pidemmän eliniän.

Yhä useampi lukeutuu nykyisin syövästä selviytyjiin. Kuva: Pixabay.

Syöpä on yleisnimitys suurelle joukolle erilaisia sairauksia. Solubiologin silmin syöpä tarkoittaa hallitsematonta solujen jakautumista, joka saa alkunsa geenivirheestä. Yksittäinen geenivirhe ei kuitenkaan yleensä riitä aiheuttamaan syöpää, vaan mutaatioita täytyy sattua useammassa solujen kasvua säätelevässä geenissä. Syövän kehittyminen vaatii tyypillisesti mutaation sekä syövänestogeenissä että syöpää aiheuttavassa geenissä, eli onkogeenissä.

Jokaisella meistä tapahtuu jatkuvasti geenimutaatioita useissa soluissa. On sattuman summaa, jos nämä muutokset osuvat siten, että syöpä pääsee kehittymään. Ihmisen elimistössä on myös pitkälle kehittynyt puolustusjärjestelmä, joka korjaa mutaatioiden aiheuttamia vaurioita. Jos järjestelmä kuitenkin pettää, vaurioituneet solut alkavat jakautua hallitsemattomasti, ja tämä johtaa lopulta syövän kehittymiseen. Vuoden 2017 tilastoissa syöpäsairaudet (kasvaimet) olivat suomalaisten toiseksi yleisin kuolinsyy verenkiertoelimistön sairauksien jälkeen. Omaan syöpäriskiinsä voi joiltain osin vaikuttaa elintavoilla, esimerkiksi pysyttelemällä erossa tupakasta.

Yhä useampi lukeutuu syövästä selviytyneisiin

Syöpä on tyypillisesti ikääntyneiden sairaus – mitä vanhemmaksi elät, sitä enemmän soluihin kertyy mutaatioita, ja sitä todennäköisemmin syöpä kehittyy. Ikävää mutta totta. Näin ollen väestön ikääntyessä myös syöpätapausten määrä kasvaa.

Iloinen uutinen on, että nykyisin yhä useampi paranee syövästä. Paranemismahdollisuus on monen tekijän summa; se riippuu muun muassa syövän levinneisyydestä ja tyypistä. Suomessa elää jo yli 260 000 syövästä selviytynyttä.

Syövän selättäminen ei kuitenkaan tule täysin ilman hintaa – syövästä selvinneet vaikuttavat vanhenevan muuta väestöä nopeammin. Syövän sairastaneilla on suurentunut riski lisäsairauksille, kuten osteoporoosille, sydämen toiminnan häiriöille ja muille syöville. Syynä tähän eroon ovat todennäköisesti syöpähoidot. Esimerkiksi kemoterapia ja sädehoito voivat aiheuttaa vaurioita DNA:han, lyhentää telomeerejä, sekä vaikuttaa epigeneettiseen säätelyyn kiihdyttäen näin vanhenemista.

Lihasmassa voi edesauttaa syövästä selviytymistä

Kakeksialla tarkoitetaan syövästä aiheutuvaa lihaskudoskatoa, kuihtumista ja laihtumista. Kakeksia ei liity yksistään vähentyneeseen syömiseen, eikä sitä voi ennaltaehkäistä tai peruuttaa lisäämällä syömistä.

Terveellä aikuisella lihakset muodostavat noin 40% kehonpainosta, joten lihaksilla on suuri rooli koko kehon aineenvaihdunnassa. Lihasten kakeksia aiheuttaa muun muassa heikkoutta ja aineenvaihdunnan ongelmia. Erityisesti luustolihasten ja sydämen kakeksiaan voi suurelta osin vaikuttaa kemoterapia, ja joskus hoitoja saatetaan joutua rajoittamaan kakeksian takia. Tämä voi osaltaan heikentää ennustetta. On kuitenkin hyvä pitää mielessä, että mikäli hoito tehoaa syöpään, sillä on silloin usein myös kakeksiaa parantava vaikutus.

Kakeksia on myös nähty itsenäisenä syöpään liittyvänä kuolinsyynä. Tämän vuoksi viimeaikaiset syöpätutkimukset ovatkin keskittyneet erityisesti lihaskudoksen ylläpitoon sairauden ja sen hoidon aikana. Eläinkokeissa on jo havaittu, että lihaskadon estäminen pidentää syöpää sairastavien elinikää. Vaikuttaisi siis siltä, että korkea lihasmassa voisi osaltaan edesauttaa syövästä selviytymistä.

Tulevaisuudessa tähdätään yksilöllisiin syöpähoitoihin

Hiljattain tiedeyhteisöä kohahdutti uutinen, jossa hiirillä tehdyssä kokeessa imusuonet oli ohjattu tuhoamaan aivokasvaimia. Yksi nopeimmin kehittyvistä syövän hoitomuodoista onkin juuri immuunihoito, tai immunoterapia, jossa potilaan omat solut ohjelmoidaan hyökkäämään syövän kimppuun. Lääkeaineet annostellaan yleensä suoneen tiputuksessa.

Onnistuessaan immuunihoidolla voi olla nykyisiä syöpähoitoja vähemmän sivuvaikutuksia ja tehokkaampi hoitotulos. Ongelmaton ei tämäkään hoitomuoto kuitenkaan ole. Viritetty immuunipuolustus voi perinteisten hoitomuotojen tapaan hyökätä myös kehon terveitä soluja vastaan, aiheuttaen muuan muassa tulehdusta.

Syöpähoidot kehittyvät jatkuvasti ja tulevaisuudessa yhä useampi potilas pääsee selviytyjien joukkoon. Vaikka perinteiset syöpähoidot toisivat mukanaan kasvaneen riskin muille sairauksille kiihdyttäen näin vanhenemista, on syytä muistaa, että me ihmiset vanhenemme hyvin eri tahtiin ihan ilman syöpähoitojen vaikutustakin. Näin ollen on hankalaa arvioida yksinomaan hoitojen vaikutusta omaan yksilölliseen vanhenemisnopeuteen tai sairastumisalttiuteen. Sen sijaan syöpähoitojen ottamatta jättäminen on varma tapa lyhentää omaa elinikää. Oman lihasmassan kasvattaminen ja ylläpito voi sen sijaan olla hyödyksi, niin sairastumisen sattuessa, kuin päivittäisissä askareissakin.

Lähteet:

  • Joensuu, Heikki; Jyrkkiö, Sirkku; Kellokumpu-Lehtinen, Pirkko-Liisa; Kouri, Mauri; Roberts, Peter J. & Teppo, Lyly (toim.) (2013) Syöpätaudit. Helsinki: Kustannus Oy Duodecim.
  • Montesano R., Hall J. Environmental causes of human cancers. European Journal of Cancer (2001), 37, Suppl 67-87.
  • Cupit-Link, M.C., J.L. Kirkland, K.K. Ness, G.T. Armstrong, T. Tchkonia, N.K. LeBrasseur, S.H. Armenian, et al. (2017). Biology of premature ageing in survivors of cancer. ESMO Open 2, e000250-2017.
  • Mohty, B. & M. Mohty. (2011). Long-term complications and side effects after allogeneic hematopoietic stem cell transplantation: an update. Blood Cancer Journal 1, e16.
  • Reulen, R.C., C. Frobisher, D.L. Winter, J. Kelly, E.R. Lancashire, C.A. Stiller, K. Pritchard-Jones, et al. (2011). Long-term risks of subsequent primary neoplasms among survivors of childhood cancer. Jama 305, 2311-2319.
  • Armstrong, G.T., T. Kawashima, W. Leisenring, K. Stratton, M. Stovall, M.M. Hudson, C.A. Sklar, et al. (2014). Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology 32, 1218-1227.
  • Bhakta, N., Q. Liu, F. Yeo, M. Baassiri, M.J. Ehrhardt, D.K. Srivastava, M.L. Metzger, et al. (2016). Cumulative burden of cardiovascular morbidity in paediatric, adolescent, and young adult survivors of Hodgkin’s lymphoma: an analysis from the St Jude Lifetime Cohort Study. The Lancet.Oncology 17, 1325-1334.
  • Scuric, Z., J.E. Carroll, J.E. Bower, S. Ramos-Perlberg, L. Petersen, S. Esquivel, M. Hogan, et al. (2017). Biomarkers of aging associated with past treatments in breast cancer survivors. NPJ Breast Cancer 3, 50-017.
  • Song, E., T. Mao, H. Dong, L.S.B. Boisserand, S. Antila, M. Bosenberg, K. Alitalo, et al. (2020). VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577, 689-694.
  • Mitnitski, A.B., J.E. Graham, A.J. Mogilner & K. Rockwood. (2002). Frailty, fitness and late-life mortality in relation to chronological and biological age. BMC Geriatrics 2, 1-2318.
  • Lee SJ, Glass DJ: Treating cancer cachexia to treat cancer. Skelet Muscle 2011, 1(1):2-5040-1-2.
  • Zhou, X., J.L. Wang, J. Lu, Y. Song, K.S. Kwak, Q. Jiao, R. Rosenfeld, et al. (2010). Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531-543.
  • Hulmi, J.J., T.A. Nissinen, M. Rasanen, J. Degerman, J.H. Lautaoja, K.A. Hemanthakumar, J.T. Backman, et al. (2018). Prevention of chemotherapy-induced cachexia by ACVR2B ligand blocking. J Cachexia Sarcopenia Muscle. 2018 Apr;9(2):417-432
  • Fearon, K., Arends, J. & Baracos, V. 2013. Understanding the mechanisms and treatment options in cancer cachexia. Nature Reviews. Clinical Oncology 10 (2), 90-99.
  • Kazemi-Bajestani, S. M., Mazurak, V. C. & Baracos, V. 2016. Computed tomography-defined muscle and fat wasting are associated with cancer clinical outcomes. Seminars in Cell & Developmental Biology 54, 2-10.
  • Samuels, S. E., Knowles, A. L., Tilignac, T., Debiton, E., Madelmont, J. C. & Attaix, D. 2001. Higher skeletal muscle protein synthesis and lower breakdown after chemotherapy in cachectic mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 281 (1), 133.

Ruumiinlämpö laskee – elinikä nousee?

Siinä missä ilmasto jatkaa lämpenemistään vaikuttaisi ihmisen sisällä tapahtuvan päinvastoin. Viimeaikaisissa tutkimuksissa on nimittäin havaittu, että keskimääräinen ruumiinlämpö on kahden viimeisen vuosisadan aikana laskenut. Samalla odotettavissa oleva elinikä on jatkanut tasaista nousuaan. Onko näiden ilmiöiden välillä yhteys?

Onko ilmaston lämpeneminen johtanut ihmisen kylmenemiseen? Kuva: Pixabay.

Terveen ihmisen normaalina ruumiinlämpönä on perinteisesti pidetty noin 37 °C. Ruumiinlämpö vaihtelee eri vuorokaudenaikoina noin puoli astetta – alimmillaan se on varhain aamulla ja korkeimmillaan iltapäivällä/illalla. Vuorokausirytmin lisäksi ruumiinlämpöön vaikuttavat fyysinen aktiivisuus, kehonkoostumus, ravitsemus ja stressi. Naisilla ruumiinlämpöön vaihtelee myös kuukautiskierron vaiheen mukaan. Ruumiinlämmön ajatellaan olevan normaalin rajoissa, kun se pysyttelee 35,8–37,8 °C välillä.

Keskimääräinen ruumiinlämpö vaikuttaisi laskeneen

Normaalina pitämämme 37 °C ruumiinlämpö pohjautuu 170 vuoden takaisiin havaintoihin.
1850-luvulla saksalainen lääkäri Carl Wunderlichmittautti 25 000 ihmiseltä useita kertoja lämpötilan kainalosta. Tämän pohjalta normaaliksi ruumiinlämmöksi määritettiin hyvin tuntemamme 37 °C. Tämän tuloksen haastavat uudemmat tutkimukset muun muassa Britanniasta, Ruotsista ja Yhdysvalloista. Normaali ruumiinlämpö vaikuttaisi nykyisin olevan alle 37 astetta.

Viimeaikaiset tutkimukset väittävät, että keskimääräinen ruumiinlämpö on laskenut noin 0,03 °C vuosikymmenessä. Tämä muutos ei tietysti kuulosta kovinkaan hurjalta, mutta se tarkoittaisi yli puolen asteen laskua 1800-luvulla ja 2000-luvulla syntyneiden välillä. Sama muutos havaitaan sukupuolesta riippumatta.

Elinolojen muutokset mahdollistavat matalamman ruumiinlämmön

Todennäköisimmät syyt mahdolliselle muutokselle ruumiinlämmössä ovat parantunut hygienia ja korkeampi terveydenhuollon taso. Erilaiset tulehdukset tapaavat kiihdyttää aineenvaihduntaa ja sitä kautta nostavat ruumiinlämpöä. Yksittäisistä sairauksista esimerkiksi tuberkuloosi on ollut hyvin yleinen 1800-luvulla, ja se oli vielä 1900-luvun alussa yksi yleisimmistä nuorten kuolinsyistä Suomessa. Nykyinen tehokas rokotusjärjestelmä ja hyvä hygienia ovat pitäneet monet ennen yleiset sairaudet meidän ulottumattomissamme.

Myös muuttuneet asumisolot sallivat kehon pysyä omassa optimilämmössään, kun kehon ei enää tarvitse työskennellä ylläpitääkseen lämpöä. Entisaikaan keho oli alttiimpi lämpötilan muutoksille ympäristössä, kun taas nykyisin sisätiloissa on usein sekä tehokas lämmitys että viilennys. Oma vaikutuksensa voi olla myös muuttuneella kehonkoostumuksella, fyysisen aktiivisuuden määrällä ja ravitsemuksella.

Matala ruumiinlämpö – pienempi solutason stressi

Ruumiinlämpö heijastelee ihmisen aineenvaihdunnan tasoa. Alhaisempi ruumiinlämpö on yhteydessä hitaampaan aineenvaihduntaan. Hitaampi aineenvaihdunta on puolestaan yhteydessä matalampaan oksidatiiviseen stressiin, jolloin keho ei joudu kamppailemaan niin paljon soluvaurioita vastaan. Alempi ruumiinlämpö siis edesauttaa solutason stressinhallintaa. Myös elinikää selvästi pidentävä kalorirajoitteinen ruokavalio laskee ruumiinlämpöä.

Toisaalta on myös arveltu, että matala kehonlämpö olisi yhteydessä ylipainon kertymiseen, kun keho käyttää vähemmän energiaa lepotilassa. Tutkimuksissa ei kuitenkaan ole havaittu eroa normaalipainoisten ja ylipainoisten ruumiinlämmössä. Onkin arveltu, että ylipainoon taipuvaisilla ihmisillä on ennen painon kertymistä ollut matalampi ruumiinlämpö, jolloin myöhemmin havaittu normaali ruumiinlämpö olisikin itse asiassa elimistön yritys polttaa ylimääräiset kalorit pois.

Tästäkin huolimatta tutkimukset ovat osoittaneet, että alhainen ruumiinlämpö on yhteydessä terveyteen ja pitkäikäisyyteen kalorirajoituksesta riippumatta, ja onpa matalaa ruumiinlämpöä pidetty jopa terveen vanhenemisen mittarina.

Korkea ruumiinlämpö – pienempi riski metabolisille sairauksille

Siinä missä matala aineenvaihdunta voi altistaa ylipainolle, korkea aineenvaihdunta voi puolestaan suojata liikakilojen kertymiseltä ja sitä kautta metabolisilta sairauksilta. Aineenvaihduntaan ja siten ruumiinlämpöön vaikuttaa erityisesti lihasmassan määrä – mitä enemmän lihasta kehossa on, sitä enemmän lämpöä tuotetaan. Kehon lämmöntuotto liittyy kiinteästi myös fyysisen aktiivisuuden määrään. Mitä enemmän liikut, sitä enemmän lämpöä syntyy.

Eläinmalleilla on lisäksi havaittu, että korkea ruumiinlämpö on yhteydessä hyvään juoksukykyyn ja pitkään elinikään. Tämä havainto viittaisi siihen, että fyysisesti aktiiviset ja ”energiaa tuhlailevat” yksilöt eläisivät pisimpään. Energiaa tuhlaavasta kehosta olisi hyötyä erityisesti nykyisessä vähäisesti liikuntaa vaativassa ja runsaasti ravintoa tarjoavassa ympäristössä.

Onko pidentynyt elinikä tosiaan seurausta alhaisemmasta ruumiinlämmöstä?

Yllä olevat esimerkit osoittavat, että ruumiinlämmön ja eliniän välinen yhteys on vielä epäselvä – toisaalta matala ruumiinlämpö suojaa soluja vaurioilta, mutta voi samalla altistaa elinikää lyhentäville metabolisille sairauksille. Kannattaisi siis olla riittävän kuuma, jottei liho, mutta riittävän kylmä, että solutason stressi pysyy alhaisena. Monimutkaista mutta totta!

Ruumiinlämmön on arveltu hieman laskevan vanhetessa. Varmaksi tiedetään, että lämmönsäätely on ikääntyneille haastavaa, etenkin äärilämpötiloissa – tähän ilmiöön liittyvät esimerkiksi kuumaan sään kuolemantapaukset.

Ruumiinlämmön ja eliniän välisissä yhteyksissä riittää siis vielä selvitettävää. On myös pidettävä mielessä, että ihmiskeho toimii verrattaen pienellä lämpötilavälillä, ja sen ylläpito on tarkoin säädeltyä. Koska ruumiinlämmön mittaustapa antaa eri tulokset mittauspaikasta (suu, kainalo, korva, suoli) ja mittausajankohdasta (vuorokaudenaika, ravitsemus, liikunta, kuukautiskierto) riippuen, on vielä epäselvää, onko uusissa tutkimuksissa havaittu alenema keskimääräisessä ruumiinlämmössä todellinen vai sittenkin mittaustapaan tai -ajankohtaan liittyvä havainto.

Lähteet:

  • https://www.hs.fi/tiede/art-2000006367528.html
  • https://www.terveyskirjasto.fi/terveyskirjasto/tk.koti?p_artikkeli=dlk00263
  • Holowatz, L.A. & W.L. Kenney. (2010). Peripheral mechanisms of thermoregulatory control of skin blood flow in aged humans. Journal of Applied Physiology (Bethesda, Md.: 1985) 109, 1538-1544.
  • Carrillo, A.E. & A.D. Flouris. (2011). Caloric restriction and longevity: effects of reduced body temperature. Ageing Research Reviews 10, 153-162.
  • Simonsick, E.M., H.C.S. Meier, N.C. Shaffer, S.A. Studenski & L. Ferrucci. (2016). Basal body temperature as a biomarker of healthy aging. Age (Dordrecht, Netherlands) 38, 445-454.
  • Sund-Levander, M., C. Forsberg & L.K. Wahren. (2002). Normal oral, rectal, tympanic and axillary body temperature in adult men and women: a systematic literature review. Scandinavian Journal of Caring Sciences 16, 122-128.
  • Obermeyer, Z., J.K. Samra & S. Mullainathan. (2017). Individual differences in normal body temperature: longitudinal big data analysis of patient records. BMJ (Clinical Research Ed.) 359, j5468.
  • Protsiv, M., C. Ley, J. Lankester, T. Hastie & J. Parsonnet. (2020). Decreasing human body temperature in the United States since the industrial revolution. eLife 9, 10.7554/eLife.49555.
  • Landsberg, L. (2012). Core temperature: a forgotten variable in energy expenditure and obesity? Obesity Reviews : An Official Journal of the International Association for the Study of Obesity 13 Suppl 2, 97-104
  • Karvinen, S.M., M. Silvennoinen, H. Ma, T. Tormakangas, T. Rantalainen, R. Rinnankoski-Tuikka, S. Lensu, et al. (2016). Voluntary Running Aids to Maintain High Body Temperature in Rats Bred for High Aerobic Capacity. Frontiers in Physiology 7, 311
  • Gleeson, M. (1998). Temperature regulation during exercise. Int. J. Sports Med. 19(Suppl. 2), S96–S99. doi: 10.1055/s-2007-971967

Suolisto vanhenemisen ohjaksissa

Teksti on kirjoitettu yhteistyössä Satu Pekkalan (FT, bakteriologian dosentti) kanssa.

Suolistomikrobit ovat olleet mediassa pinnalla jo vuosia. Onpa suolistoa tituleerattu jopa elimistön toisiksi aivoiksikin. Tuoreet tutkimukset ovat paljastaneet suolistolla olevan yhä moninaisempia rooleja terveyden ylläpidossa. Voisivatko suolistomikrobit vaikuttaa myös vanhenemiseen?

Mistä tietää, onko bakteeri ystävä vai vihollinen? Kuva: Pixabay

Mikrobiomilla tarkoitetaan ihmistä asuttavien mikrobien muodostamaa kokonaisuutta. Mikrobeja ovat esimerkiksi bakteerit, hiivat ja virukset. Ne ovat kooltaan niin pieniä, ettei niitä voi havaita paljain silmin. Ihmisellä on suolistoa asuttavat mikrobit painavat peräti noin 1,5 kiloa. Erilaisia mikrobiomeja on myös esimerkiksi iholla ja kehon limakalvoilla. Ihmisen oman mikrobiomin muodostuminen alkaa viimeistään syntymästä ja muovautuu suuresti elinkaaren aikana. Tämä teksti keskittyy suoliston mikrobiomiin, joka on kehomme suurin ja monimuotoisin bakteeriyhdyskunta. 

Bakteerit aiheuttavat sairauksia – mutta myös pitävät sinut terveenä

Perinteisesti ajatellaan, että bakteereista on lähinnä harmia: ne aiheuttavat erilaisia tulehduksia ja tauteja. Nykyisin kuitenkin tiedetään, että monet mikrobit – bakteerit mukaan lukien – ovat erottamaton ja tärkeä osa ihmiskehoa. Ne ylläpitävät muuan muassa ihon ja suoliston terveyttä estäen haitallisten mikrobien kasvun. Mikrobit auttavat sinua myös ravintoaineiden imeytymisessä ja K-vitamiinin tuottamisessa.

Mikrobiomia kutsutaan myös ihmisen toiseksi perimäksi, sillä mikrobit tuovat oman geneettisen materiaalinsa yksilön kehoon. Mikrobien suuren määrän vuoksi niiden perimässä on itse asiassa jopa enemmän geenejä kuin ihmisessä. Mikrobiomin tiedetään vaikuttavan esimerkiksi sairastumisalttiuteen. Meitä yksinkertaisemmilla eliöillä, kuten jyrsijöillä, mikrobien on osoitettu vaikuttavan jopa isäntänsä vanhenemisnopeuteen ja elinikään.

Mikrobiomi muuttuu vanhetessa

Mikrobiomin suurimmat muutokset ajoittuvat erityisesti varhaislapsuuteen ja vanhuuteen. Kiinnostavaa kyllä, samoihin ikäkausiin ajoittuu myös immuunipuolustuksen epävakaus, viitaten siihen, että mikrobiomi ja immuunipuolustus kehittyvät ja ikääntyvät yhdessä.

Vanhenemisen yksi erityispiirre on alttius erilaisille tulehduksille. On havaittu, että suoliston mikrobiomilla voi olla tärkeä rooli tulehdustilojen kehittymisessä. Vanhenemisen yhteydessä puhutaankin dysbioosista, eli mikrobitasapainon häiriötilasta. Häiriötila voi olla yksinkertaisesti mikrobiomin yksipuolisuutta, mutta sen voivat aiheuttaa myös muutokset suolen toiminnassa. Dysbioosi puolestaan altistaa useille banhenemiseen liittyville sairauksille, kuten sydän- ja verisuonitaudeille, Alzheimerin taudille ja dementialle. Suoliston bakteerit voivat siis osaltaan vaikuttaa vanhenemiseen, tai toisaalta, ikäntyminen voi muuttaa suoliston bakteereja. Yhtenä tärkeänä tekijänä voivat olla tiettyjen bakteerien tuottamat, tulehdusta hillitsevät tekijät. Jos tällaiset bakteerit vähenevät ikääntyessä, voisi se selittää myös mikrobiomin, vanhenemisen ja tulehduksen välisen yhteyden.

Ruokavalio ja ympäristö muokkaavat suoliston mikrobiomia

Ruokavalion on arveltu olevan suoliston mikrobiomin päävaikuttaja. Tämä käy ilmi erityisesti eläimillä tehdyissä kokeissa, joissa elinten ruokavalio ja elinympäristö on tarkoin kontrolloitu. Sama pätee myös tarkasteltaessa suuria ihmisjoukkoja – sen sijaan epäselvää on vielä, missä määrin yksittäinen ihminen voi suolistobakteereihinsa pelkällä ruokavaliolla vaikuttaa. Erilaisia ruokavalioita, kuten välimeren ruokavaliota ja ketogeenistä ruokavaliota on tutkittu paljonkin, mutta tulokset ovat osittain ristiriitaisia. Toistaiseksi ainakin ravintokuidun määrä vaikuttaa olevan mikrobiomiin eniten vaikuttava tekijä. Hämmästyttävä kyllä, uusimmissa tutkimuksissa on myös havaittu, että liikunta voi muuttaa suoliston mikrobiomia. Ehkäpä se liittyy liikunnan aikaansaamiin suolen toiminnan muutoksiin.

Viime vuosina on yhä enemmän herätty myös elinympäristön mikrobiomia muovaavaan vaikutukseen. Asia ei ole kuitenkaan niin yksinkertainen, että sopivia bakteereja saisi kehoonsa vähän multaa kääntelemällä ja possua rapsuttelemalla. Ihmisen bakteerikanta kun ei ole sama ympäristön kanssa. Monimuotoinen ympäristö kuitenkin tuntuu olevan avain terveeseen mikrobiomiin, joka puolestaan suojaa meitä monilta sairauksilta, kuten tulehduksilta.

Mikrobiomia muokkaamalla parempaa terveyttä ja pitkää ikää?

Suoliston mikrobiomin tutkimus on vasta alkutaipaleella. Jo pelkästään normaalin mikrobiomin koostumuksen määrittäminen on ollut haasteellista – vaihtelu terveidenkin ihmisten välillä kun on suurta.

Toistaiseksi ainoa suolistomikrobeihin perustuva lääketieteen hoitokeino on ulosteensiirto.Ulosteensiirrossa paksusuoleen siirretään tyypillisesti lähiomaisen niin sanottua tervettä ulostetta. Menetelmää käytetään Suomessa tällä hetkellä vain hankalan antibioottiripulin hoitoon. Maailmalla on kuitenkin tutkittu siirtoa jopa lihavuuden hoitokeinona, tosin huonoin menestyksin.

Muutokset suoliston mikrobiomissa liittyvät useisiin eri sairauksiin ja vanhenemiseen. Niinpä mikrobiomin koostumuksen ja toiminnan ymmärtäminen voisi tarjota uudenlaisia, tiettyihin mikrobikantoihin perustuvia hoitomahdollisuuksia. Tulevaisuudessa erilaisia sairauksia voidaan mahdollisesti ehkäistä ja vanhenemista hidastaa suolistomikrobeja muokkaavan ruokavalion ja liikunnan avulla, tai jopa siirtämällä ulosteen sijaan tiettyä, hyvää mikrobia suolistoon.

Vanhenemiseen liittyen näyttäisi ainakin siltä, että kotona eläminen ”laitostumisen” sijaan rikastuttaisi mikrobiomia. Nähtäväksi kuitenkin jää, tuoko se pidempää ikää pitkällä tähtäimellä.

Lisää suolistoaiheista tietoa löydät Satun suolistoblogista.

Lähteet:

  • https://www.suolistoblogi.com/
  • https://www.duodecimlehti.fi/lehti/2013/22/duo11328
  • Qin J et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464(7285):59-65.
  • Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI: Host-bacterial mutualism in the human intestine. Science 2005, 307(5717):1915-1920.
  • Aitken JD, Gewirtz AT: Gut microbiota in 2012: Toward understanding and manipulating the gut microbiota. Nat Rev Gastroenterol Hepatol 2013, 10(2):72-74.
  • Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Makela MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T: Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 2012, 109(21):8334-8339.
  • Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C: Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 2012, 13(9):R79-2012-13-9-r79.
  • Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H: Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging 2018, 4(4):267-285.
  • Buford TW: (Dis)Trust your gut: the gut microbiome in age-related inflammation, health, and disease. Microbiome 2017, 5(1):80-017-0296-0.
  • Han B, Sivaramakrishnan P, Lin CJ, Neve IAA, He J, Tay LWR, Sowa JN, Sizovs A, Du G, Wang J, Herman C, Wang MC: Microbial Genetic Composition Tunes Host Longevity. Cell 2017, 169(7):1249-1262.e13.
  • Munukka E, Ahtiainen JP, Puigbo P, Jalkanen S, Pahkala K, Keskitalo A, Kujala UM, Pietila S, Hollmen M, Elo L, Huovinen P, D’Auria G, Pekkala S: Six-Week Endurance Exercise Alters Gut Metagenome That Is not Reflected in Systemic Metabolism in Over-weight Women. Front Microbiol 2018, 9:2323.